Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(6): 2238-2243    DOI: 10.1088/1674-1056/18/6/022
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Ground state energy of He isoelectronic sequence treated variationally via Hylleraas-like wavefunction

Serpil Şakiroĝlu, Kadir Akgüngör, and ìsmail Sökmen
Physics Department, Dokuz Eylül University,Buca-?zmir 35160, Turkey
Abstract  In this study, the energy for the ground state of helium and a few helium-like ions (Z=1--6) is computed variationally by using a Hylleraas-like wavefunction. A four-parameters wavefunction, satisfying boundary conditions for coalescence points, is combined with a Hylleraas-like basis set which explicitly incorporates r12 interelectronic distance. The main contribution of this work is the introduction of modified correlation terms leading to the definition of integral transforms which provide the calculation of expectation value of energy to be done analytically over single-particle coordinates instead of Hylleraas coordinates.
Keywords:  He isoelectronic sequence      Hylleraas basis set      electronic correlation      variational method  
Received:  31 July 2008      Revised:  05 September 2008      Accepted manuscript online: 
PACS:  31.15.xt (Variational techniques)  
  31.10.+z (Theory of electronic structure, electronic transitions, and chemical binding)  
Fund: Project supported by the Cumhuriyet University National MOVPE Crystal Growth and Characterization Laboratory, DPT-K 120, TUBITAK (Grant Nos TBAG 105T492, TBAG 107T012, and TBAG-108T015).

Cite this article: 

Serpil Şakiroĝlu, Kadir Akgüngör, and ìsmail Sökmen Ground state energy of He isoelectronic sequence treated variationally via Hylleraas-like wavefunction 2009 Chin. Phys. B 18 2238

[1] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[2] Variational approximation methods for long-range force transmission in biopolymer gels
Haiqin Wang(王海钦), and Xinpeng Xu(徐新鹏). Chin. Phys. B, 2022, 31(10): 104602.
[3] Propagation dynamics of dipole breathing wave in lossy nonlocal nonlinear media
Jian-Li Guo(郭建丽), Zhen-Jun Yang(杨振军), Xing-Liang Li(李星亮), and Shu-Min Zhang(张书敏). Chin. Phys. B, 2022, 31(1): 014203.
[4] Topological classification of periodic orbits in Lorenz system
Chengwei Dong(董成伟). Chin. Phys. B, 2018, 27(8): 080501.
[5] An analytical variational method for the biased quantum Rabi model in the ultra-strong coupling regime
Bin-Bin Mao(毛斌斌), Maoxin Liu(刘卯鑫), Wei Wu(吴威), Liangsheng Li(李粮生), Zu-Jian Ying(应祖建), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2018, 27(5): 054219.
[6] Resonances for positron-helium and positron-lithium systems in kappa-distribution plasma
Zi-Shi Jiang(姜子实), Ya-Chen Gao(高亚臣), Sabyasachi Kar, Kurunathan Ratnavelu. Chin. Phys. B, 2018, 27(12): 123402.
[7] Odd-even harmonic emission from asymmetric molecules: Identifying the mechanism
Jianguo Chen(陈建国), Shujuan Yu(于术娟), Yanpeng Li(李雁鹏), Shang Wang(王赏), Yanjun Chen(陈彦军). Chin. Phys. B, 2017, 26(9): 094209.
[8] Properties of strong-coupling magneto-bipolaron qubit in quantum dot under magnetic field
Xu-Fang Bai(白旭芳), Ying Zhang(张颖), Wuyunqimuge(乌云其木格), Eerdunchaolu(额尔敦朝鲁). Chin. Phys. B, 2016, 25(7): 077804.
[9] Start-up phase plasma discharge design of a tokamak via control parameterization method
Guo Shan (郭珊), Xu Ke (许珂), Xu Chao (许超), Ren Zhi-Gang (任志刚), Xiao Bing-Jia (肖炳甲). Chin. Phys. B, 2015, 24(3): 035202.
[10] Research on the discrete variational method for a Birkhoffian system
Liu Shi-Xing (刘世兴), Hua Wei (花巍), Guo Yong-Xin (郭永新). Chin. Phys. B, 2014, 23(6): 064501.
[11] Elastic fields around a nanosized elliptichole in decagonal quasicrystals
Li Lian-He (李联和), Yun Guo-Hong (云国宏). Chin. Phys. B, 2014, 23(10): 106104.
[12] Study of electronic structures and absorption bands of BaMgF4 crystal with F colour centre
Kang Ling-Ling(康玲玲), Liu Ting-Yu(刘廷禹), Zhang Qi-Ren(张启仁), Xu Ling-Zhi(徐灵芝), and Zhang Fei-Wu(张飞武) . Chin. Phys. B, 2011, 20(4): 047101.
[13] The energy levels of a two-electron two-dimensional parabolic quantum dot
Li Wei-Ping(李伟萍), Xiao Jing-Lin(肖景林),Yin Ji-Wen(尹辑文), Yu Yi-Fu(于毅夫), and Wang Zi-Wu(王子武). Chin. Phys. B, 2010, 19(4): 047102.
[14] Fourier transform technique in variational treatment of two-electron parabolic quantum dot
S. Şakiroĝlu, A. Yildiz, ü. Doĝan, K. Akgüngör, H. Epik, Y. Ergün, H. Sari and ì. Sökmen. Chin. Phys. B, 2009, 18(8): 3508-3516.
[15] Ground state energy of excitons in quantum dot treated variationally via Hylleraas-like wavefunction
S. Şakiroĝlu, ü. Doĝan, A. Yldz, K. Akgüngör, H. Epik, Y. Ergün, H. Sari, and ì. Sökmen. Chin. Phys. B, 2009, 18(4): 1578-1585.
No Suggested Reading articles found!