ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Odd-even harmonic emission from asymmetric molecules: Identifying the mechanism |
Jianguo Chen(陈建国), Shujuan Yu(于术娟), Yanpeng Li(李雁鹏), Shang Wang(王赏), Yanjun Chen(陈彦军) |
College of Physics and Information Technology, Shaan'xi Normal University, Xi'an 710119, China |
|
|
Abstract We study odd-even high-order harmonic generation (HHG) from oriented asymmetric molecules HeH2+ numerically and analytically. The variational method is used to improve the analytical description of the ground-state wave function for the asymmetric system, with which the ground-state-continuum-state transition dipole is evaluated. The comparison between the odd-even HHG spectra and the improved dipoles allows us to identify and clarify the complex generation mechanism of odd-even harmonics from asymmetric molecules, providing deep insights into the relation between the odd-even HHG and the asymmetric molecular orbital.
|
Received: 22 March 2017
Revised: 25 April 2017
Accepted manuscript online:
|
PACS:
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11274090) and the Fundamental Research Funds for the Central Universities, China (Grant No. SNNU. GK201403002). |
Corresponding Authors:
Yanjun Chen
E-mail: chenyanjun@snnu.edu.cn
|
Cite this article:
Jianguo Chen(陈建国), Shujuan Yu(于术娟), Yanpeng Li(李雁鹏), Shang Wang(王赏), Yanjun Chen(陈彦军) Odd-even harmonic emission from asymmetric molecules: Identifying the mechanism 2017 Chin. Phys. B 26 094209
|
[1] |
McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K and Rhodes C K 1987 J. Opt. Soc. Am. B 4 595
|
[2] |
L'Huillier A, Schafer K J and Kulander K C 1991 J. Phys. B 24 3315
|
[3] |
Antoine P, Anne L and Lewenstein M 1996 Phys. Rev. Lett. 77 1234
|
[4] |
Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
|
[5] |
Corkum P B 1993 Phys. Rev. Lett. 71 1994
|
[6] |
Lewenstein M, Balcou P, Ivanov M Y, L'Huillier A and Corkum P B 1994 Phys. Rev. A 49 2117
|
[7] |
Lein M, Hay N, Velotta R, Marangos J P and Knight P L 2002 Phys. Rev. A 66 023805
|
[8] |
Lein M, Corso P P, Marangos J P and Knight P L 2003 Phys. Rev. A 67 023819
|
[9] |
Lagmago K G and Bandrauk A D 2005 Phys. Rev. A 71 053407
|
[10] |
Zhou X X, Tong X M, Zhao Z X and Lin C D 2005 Phys. Rev. A 72 033412
|
[11] |
Wang B, Cheng T, Li X, Fu P, Chen S and Liu J 2005 Phys. Rev. A 72 063412
|
[12] |
Chen J, Chu S I and Liu J 2006 J. Phys. B 39 4747
|
[13] |
Song Y, Li S Y, Liu X S, Guo F M and Yang Y J 2013 Phys. Rev. A 88 053419
|
[14] |
Kamta G L and Bandrauk A D 2005 Phys. Rev. Lett. 94 203003
|
[15] |
Wu J, Zeng H and Guo C l 2006 Phys. Rev. A 74 031404
|
[16] |
Rupenyan A, Kraus P M, Schneider J and Wörner H J 2013 Phys. Rev. A 87 031401
|
[17] |
Akagi H, Otobe T, Staudte A, Shiner A, Turner F, Dörner R, Villeneuve D M and Corkum P B 2009 Science 325 1364
|
[18] |
Shi Y Z, Zhang B, Li W Y, Yu S J and Chen Y J 2017 Phys. Rev. A 95 033406
|
[19] |
Etches A and Madsen L B 2010 J. Phys. B 43 155602
|
[20] |
Augstein B B and Faria C F D M 2011 J. Mod. Opt. 58 1173
|
[21] |
Pan Y, Zhao S F and Zhou X X 2013 Phys. Rev. A 87 035805
|
[22] |
Zhu X S, Zhang Q B, Hong W Y, Lan P F and Lu P X 2011 Opt. Express 19 436
|
[23] |
Du H C, Luo L Y, Wang X S and Hu B T 2012 Phys. Rev. A 86 013846
|
[24] |
Miao X Y and Du H N 2013 Phys. Rev. A 87 053403
|
[25] |
Bian X B and Bandrauk A D 2010 Phys. Rev. Lett. 105 093903
|
[26] |
Etches A, Gaarde M B and Madsen L B 2011 Phys. Rev. A 84 023418
|
[27] |
Heslar J, Telnov D and Chu S I 2011 Phys. Rev. A 83 043414
|
[28] |
Chen Y J and Zhang B 2011 Phys. Rev. A 84 053402
|
[29] |
Frumker E, Hebeisen C T, Kajumba N, Bertrand J B, Wörner H J, Spanner M, Villeneuve D M, Naumov A and Corkum P B 2012 Phys. Rev. Lett. 109 113901
|
[30] |
Kraus P M, Rupenyan A and Wörner H J 2012 Phys. Rev. Lett. 109 233903
|
[31] |
Frumker E, Kajumba N, Bertrand J B, Wörner H J, Hebeisen C T, Hockett P, Spanner M, Patchkovskii S, Paulus G G, Villeneuve D M, Naumov A and Corkum P B 2012 Phys. Rev. Lett. 109 233904
|
[32] |
Kraus P M, Baykusheva D and Wörner H J 2014 Phys. Rev. Lett. 113 023001
|
[33] |
Chen Y J, Fu L B and Liu J 2013 Phys. Rev. Lett. 111 073902
|
[34] |
Zhang B, Chen Y J, Jiang X Q and Sun X D 2013 Phys. Rev. A. 88 053428
|
[35] |
Yu S J, Zhang B, Li Y, Yang S and Chen Y J 2014 Phys. Rev. A 90 053844
|
[36] |
Zhang B, Yu S J, Chen Y J, Jiang X Q and Sun X D 2015 Phys. Rev. A. 92 053833
|
[37] |
Li W Y, Yu S J, Wang S, and Chen Y J 2016 Phys. Rev. A. 94 053407
|
[38] |
Chen Y J and Zhang B 2012 Phys. Rev. A. 86 023415
|
[39] |
Lein M, Hay N, Velotta R, Marangos J P and Knight P L 2002 Phys. Rev. Lett. 88 183903
|
[40] |
Kanai T, Minemoto S and Sakai H 2005 Nature 435 470
|
[41] |
Vozzi C, Calegari F, Benedetti E, Caumes J P, Sansone G, Stagira S, Nisoli M, Torres R, Heesel E, Kajumba N, Marangos J P, Altucci C and Velotta R 2005 Phys. Rev. Lett. 95 153902
|
[42] |
Le A T, Tong X M and Lin C D 2006 Phys. Rev. A 73 041402
|
[43] |
Chen Y J, Liu J and Hu B 2009 J. Chem. Phys. 130 044311
|
[44] |
Wu Y, Zhang J, Ye H and Xu Z 2011 Phys. Rev. A 83 023417
|
[45] |
Itatani J, Levesque J, Zeidler D, Niikura H, Pepin H, Kieffer J C, Corkum P B and Villeneuve D M 2004 Nature 432 867
|
[46] |
Son S K, Telnov D A and Chu S I 2010 Phys. Rev. A 82 043829
|
[47] |
Zhang X F, Zhu X S, Liu X, Wang D, Zhang Q B, Lan P F and Lu P X 2017 Opt. Lett. 42 1027
|
[48] |
Zhou X, Lock R, Wagner N, Li W, Kapteyn H C and Murnane M M 2009 Phys. Rev. Lett. 102 073902
|
[49] |
Li L, Wang Z, Li F and Long H 2017 Opt. Quant. Electron. 49 73
|
[50] |
Levesque J, Mairesse Y, Dudovich N, Pépin H, Kieffer J C, Corkum P B and Villeneuve D M 2007 Phys. Rev. Lett. 99 243001
|
[51] |
Zhai C Y, Zhu X S, Lan P F, Wang F, He L X, Shi W J, Li Y, Li M, Zhang Q B and Lu P X 2017 Phys. Rev. A 95 033420
|
[52] |
Ramakrishna S, Sherratt P A J, Dutoi A D and Seideman T 2010 Phys. Rev. A 81 021802
|
[53] |
Sherratt P A J, Ramakrishna S and Seideman T 2011 Phys. Rev. A 83 053425
|
[54] |
Feit M D, Fleck J J A and Steiger A 1982 J. Comput. Phys. 47 412
|
[55] |
Antoine P, L'Huillier A and Lewenstein M 1996 Phys. Rev. Lett. 77 1234
|
[56] |
Sansone G, Benedetti E, Caumes J P, Stagira S, Vozzi C, Silvestri S D and Nisoli M 2006 Phys. Rev. A 73 053408
|
[57] |
Zaïr A, Holler M, Guandalini A, Schapper F, Biegert J, Gallmann L, Keller U, Wyatt A S, Monmayrant A, Walmsley I A, Cormier E, Auguste T, Caumes J P and Saliéres P 2008 Phys. Rev. Lett. 100 143902
|
[58] |
Strelkov V V, Gonoskov A A, Gonoskov I A and Ryabikin M Y 2011 Phys. Rev. Lett. 107 043902
|
[59] |
Chen Y J and Hu B 2009 Phys. Rev. A 80 033408
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|