Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(8): 3508-3516    DOI: 10.1088/1674-1056/18/8/062
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Fourier transform technique in variational treatment of two-electron parabolic quantum dot

S. Şakiroĝlua)†, A. Yildiza), Ü. Doĝana), K. Akgüngöra), H. Epika), Y. Ergünb), H. Saric) and ì. Sökmena)
a Physics Department, Dokuz Eylül University, Buca -?zmir 35160, Turkey; b Physics Department, Anadolu University, Eski?ehir 26470, Turkey; c Physics Department, Cumhuriyet University, Sivas 58140, Turkey
Abstract  In this work, we propose an efficient method of reducing the computational effort of variational calculation with a Hylleraas-like trial wavefunction. The method consists of introducing integral transforms for the terms as $r_{12}^k\exp(-\lambda r_{12})$ which provide the calculation of the expectation value of energy and the relevant matrix elements to be done analytically over single-electron coordinates instead of Hylleraas coordinates. We have used this method to calculate the ground state energy of a two-electron system in a spherical dot and a disk-like quantum dot separately. Under parabolic confinement potential and within effective mass approximation size and shape effects of quantum dots on the ground state energy of two electrons have been investigated. The calculation shows that our results even with a small number of basis states are in good agreement with previous theoretical results.
Keywords:  two-electron quantum dot      parabolic confinement      variational method      Hylleraas coordinates  
Received:  05 December 2008      Revised:  04 February 2009      Accepted manuscript online: 
PACS:  73.21.La (Quantum dots)  
  71.18.+y (Fermi surface: calculations and measurements; effective mass, g factor)  
Fund: Project supported by the Cumhuriyet University, National MOVPE Crystal Growth and Characterization Laboratory, Turkey, DPT-K 120, TUBITAK (Grant Nos TBAG 105T492, TBAG 107T012, and TBAG-108T015).

Cite this article: 

S. Şakiroĝlu, A. Yildiz, ü. Doĝan, K. Akgüngör, H. Epik, Y. Ergün, H. Sari and ì. Sökmen Fourier transform technique in variational treatment of two-electron parabolic quantum dot 2009 Chin. Phys. B 18 3508

[1] Variational approximation methods for long-range force transmission in biopolymer gels
Haiqin Wang(王海钦), and Xinpeng Xu(徐新鹏). Chin. Phys. B, 2022, 31(10): 104602.
[2] Propagation dynamics of dipole breathing wave in lossy nonlocal nonlinear media
Jian-Li Guo(郭建丽), Zhen-Jun Yang(杨振军), Xing-Liang Li(李星亮), and Shu-Min Zhang(张书敏). Chin. Phys. B, 2022, 31(1): 014203.
[3] Topological classification of periodic orbits in Lorenz system
Chengwei Dong(董成伟). Chin. Phys. B, 2018, 27(8): 080501.
[4] An analytical variational method for the biased quantum Rabi model in the ultra-strong coupling regime
Bin-Bin Mao(毛斌斌), Maoxin Liu(刘卯鑫), Wei Wu(吴威), Liangsheng Li(李粮生), Zu-Jian Ying(应祖建), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2018, 27(5): 054219.
[5] Resonances for positron-helium and positron-lithium systems in kappa-distribution plasma
Zi-Shi Jiang(姜子实), Ya-Chen Gao(高亚臣), Sabyasachi Kar, Kurunathan Ratnavelu. Chin. Phys. B, 2018, 27(12): 123402.
[6] Odd-even harmonic emission from asymmetric molecules: Identifying the mechanism
Jianguo Chen(陈建国), Shujuan Yu(于术娟), Yanpeng Li(李雁鹏), Shang Wang(王赏), Yanjun Chen(陈彦军). Chin. Phys. B, 2017, 26(9): 094209.
[7] Properties of strong-coupling magneto-bipolaron qubit in quantum dot under magnetic field
Xu-Fang Bai(白旭芳), Ying Zhang(张颖), Wuyunqimuge(乌云其木格), Eerdunchaolu(额尔敦朝鲁). Chin. Phys. B, 2016, 25(7): 077804.
[8] Start-up phase plasma discharge design of a tokamak via control parameterization method
Guo Shan (郭珊), Xu Ke (许珂), Xu Chao (许超), Ren Zhi-Gang (任志刚), Xiao Bing-Jia (肖炳甲). Chin. Phys. B, 2015, 24(3): 035202.
[9] Research on the discrete variational method for a Birkhoffian system
Liu Shi-Xing (刘世兴), Hua Wei (花巍), Guo Yong-Xin (郭永新). Chin. Phys. B, 2014, 23(6): 064501.
[10] Elastic fields around a nanosized elliptichole in decagonal quasicrystals
Li Lian-He (李联和), Yun Guo-Hong (云国宏). Chin. Phys. B, 2014, 23(10): 106104.
[11] Study of electronic structures and absorption bands of BaMgF4 crystal with F colour centre
Kang Ling-Ling(康玲玲), Liu Ting-Yu(刘廷禹), Zhang Qi-Ren(张启仁), Xu Ling-Zhi(徐灵芝), and Zhang Fei-Wu(张飞武) . Chin. Phys. B, 2011, 20(4): 047101.
[12] The energy levels of a two-electron two-dimensional parabolic quantum dot
Li Wei-Ping(李伟萍), Xiao Jing-Lin(肖景林),Yin Ji-Wen(尹辑文), Yu Yi-Fu(于毅夫), and Wang Zi-Wu(王子武). Chin. Phys. B, 2010, 19(4): 047102.
[13] Ground state energy of He isoelectronic sequence treated variationally via Hylleraas-like wavefunction
Serpil Şakiroĝlu, Kadir Akgüngör, and ìsmail Sökmen. Chin. Phys. B, 2009, 18(6): 2238-2243.
[14] Ground state energy of excitons in quantum dot treated variationally via Hylleraas-like wavefunction
S. Şakiroĝlu, ü. Doĝan, A. Yldz, K. Akgüngör, H. Epik, Y. Ergün, H. Sari, and ì. Sökmen. Chin. Phys. B, 2009, 18(4): 1578-1585.
[15] Extended Holstein polaron model for charge transfer in dry DNA
Liu Tao(刘涛), Wang Yi(王忆), and Wang Ke-Lin(汪克林). Chin. Phys. B, 2007, 16(1): 272-276.
No Suggested Reading articles found!