In this paper, an efficient thermal analysis method is presented for large scale compound semiconductor integrated circuits based on a heterojunction bipolar transistor with considering the change of thermal conductivity with temperature. The influence caused by the thermal conductivity can be equivalent to the increment of the local temperature surrounding the individual device. The junction temperature for each device can be efficiently calculated by the combination of the semi-analytic temperature distribution function and the iteration of local temperature with high accuracy, providing a temperature distribution for a full chip. Applying this method to the InP frequency divider chip and the GaAs analog to digital converter chip, the computational results well agree with the results from the simulator COMSOL and the infrared thermal imager respectively. The proposed method can also be applied to thermal analysis in various kinds of semiconductor integrated circuits.
Project supported by the Advance Research Foundation of China (Grant No. 9140Axxx501), the National Defense Advance Research Project, China (Grant No. 3151xxxx301), the Frontier Innovation Program, China (Grant No. 48xx4), and the 111 Project, China (Grant No. B12026).
Shi-Zheng Yang(杨施政), Hong-Liang Lv(吕红亮), Yu-Ming Zhang(张玉明), Yi-Men Zhang(张义门), Bin Lu(芦宾), Si-Lu Yan(严思璐) Efficient thermal analysis method for large scale compound semiconductor integrated circuits based on heterojunction bipolar transistor 2018 Chin. Phys. B 27 108101
[1]
Hossain M, Nosaeva K, Janke B, Weimann N, Krozer V and Heinrich W 2016 IEEE Microw. Wirel. Compon. Lett. 26
[2]
Li O P, Zhang Y, Xu R M, Cheng W, Wang Y, Niu, B and Lu H Y 2016 Chin. Phys. B 25 058401
[3]
Yamamoto K, Miyashita M, Maki S, Takahashi Y, Fujii K, Fujiwara S, Kitabayashi F, Suzuki S, Shimura T, Hieda M and Seki.H 2016 IEEE Trans. Microw. Theory Tech. 64 810
[4]
Kang S, Kim D, Urteaga M and Seo M 2017 Proc. IEEE Int. Symp. Radio-Freq. Integr. Technol. (RFIT), August 30-Septemper 1, 2017, Seoul, South Korea, p. 25
[5]
Ge J, Liu H G, Su Y B, Cao Y X and Jin Z 2012 Chin. Phys. B 21 058501
[6]
Luong M D, Ishikawa R, Takayama Y and Honjo K 2017 IEEE Trans. Circuits Syst. I Reg. Papers 64 1140
[7]
Coquillat D, Nodjiadjim V, Blin S, Konczykowska A, Dyakonova N, Consejo C, Nouvel P, Pénarier A, Torres J, But D, Ruffenach S, Teppe F, Riet M, Muraviev A, Gutin A, Shur M and Knap W 2016 Int. J. High Speed Electron. Syst. 25 164001
[8]
Urteaga M, Griffith Z, Seo M, Hacker J and Rodwell M J W 2017 Proc. IEEE 105 1051
[9]
Lin L, Zhou L, Wang R, Tong L and Yin W Y 2015 IEEE Trans. Microw. Theory Tech. 63 1951
[10]
Kim J, Jeon S, Kim M, Urteaga M and Jeong J 2015 IEEE Trans. Terahertz Sci. Technol. 5 215
[11]
Baek S, Ahn H, Nam I, Ryu N, Lee H D, Park B and Lee O 2016 IEEE Microw. Wirel. Compon. Lett. 26 921
[12]
Grandchamp B, Nodjiadjim V, Zaknoune M, Koné G A, Hainaut C, Godin J, Riet M, Zimmer T and Maneux C 2011 IEEE Trans. Electron. Devices 58 2566
[13]
Su J L and Tseng H C 2017 IEEE Trans. Device Mater. Rel. 17 678
[14]
Sukwon S, Peake G M, Keeler G A, Geib K M, Briggs R D, Beechem T E, Shaffer R A, Clevenger J, Patrizi G A, Klem J F, Tauke-Pedretti A and Nordquist C D 2016 IEEE Trans. Compon. Packag. Manuf. Technol. 6 740
[15]
Koné G A Grandchamp B Hainaut C Marc F Maneux C Labat N Zimmer T Nodjiadjim V Riet M and Godinb J 2011 Microelectron. Reliab. 9 1730
[16]
Kone G A, Maneux C, Labat N, Zimmer T, Grandchamp B, Frijlink P and Maher H 2012 Int. Conf. Indium Phosphide Relat. Mater., August 27-30, 2012, Santa Barbara, USA, p. 208
[17]
Tao N, Lin B, Lee C, Henderson T and Lin B 2015 Int. J. Microw. Wirel. Technol. 7 279
[18]
Chivukula V, Teeter D, Scott P, Shah B and Ji M 2014 Microelectron. Reliab. 54 2688
[19]
Liu X, Yuan J and Liou J 2011 Microelectron. Reliab. 51 2147
[20]
Ozalas M T 2014 Proc. Compound Semicond. Integr. Circuit Symp. (CSIC), October 19-22, 2014, La Jolla, USA, p. 1
[21]
Li P, Pileggi L T, Asheghi M and Chandra R 2006 IEEE Trans. Comput-Aided Design Integr. Circuits Syst. 25 1763
[22]
Yu W, Zhang T, Yuan X and Qian H 2013 IEEE Trans. Comput-Aided Design Integr. Circuits Syst. 32 2014
[23]
Feng Z and Li P 2013 IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21 1526
[24]
Liu S S Y, Luo R G, Aroonsantidecha S, Chin C Y and Chen H M 2014 IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22 1404
[25]
Zhang C, Han Q G, Ma H A, Xiao H Y, Li R, Li Z C, Tian Y and Jia X P 2010 Acta Phys. Sin. 59 1923 (in Chinese)
[26]
Zheng Y B, Yao J Q, Zhang L, Wang Y, Wen W Q, Jing L and Di Z G 2012 Chin. Phys. Lett. 29 024203
[27]
Grasser T and Selberherr S 2000 Proc. Int. Semicond. Conf., October 10-14, 2000, Sinaia, Romania, p. 43
[28]
Zhang J C, Zhang Y M, Lu H L, Zhang Y M, Xiao G H and Ye G P 2014 J. Semicond. 35 08005
[29]
Palankovski V 2000 "Simulation of heterojunction bipolar transistors" Ph. D. Dissertation (Vienna:Vienna University of Technology)
[30]
Harrison I, Dahlstrom M, Krishnan S, Griffith Z, Kim Y M and Rodwell M J W 2004 IEEE Trans. Electron Dev. 51 529
[31]
Matsuda T, Hanai H, Tohjo T, Iwata H, Kondo D, Hatakeyama T, Ishizuka M and Ohzone T 2014 IEEE Trans. Semicond. Manuf. 27 151
[32]
Cheng Y K and Kang S M 2000 IEEE Trans. Comput-Aided Design Integr. Circuits Syst. 19 1211
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.