Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 096501    DOI: 10.1088/1674-1056/27/9/096501
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Properties of negative thermal expansion β-eucryptite ceramics prepared by spark plasma sintering

Li-Min Zhao(赵利敏), Yong-Guang Cheng(程永光), Hao-Shan Hao(郝好山), Jiao Wang(王娇), Shao-Hui Liu(刘少辉), Bao-Sen Zhang(张宝森)
School of Science, Henan Institute of Engineering, Zhengzhou 451191, China
Abstract  

β-eucryptite powders are prepared by the sol-gel method through using tetraethoxysilane lithium nitrate and aluminum isopropoxide as starting materials. β-eucryptite ceramics are prepared by spark plasma sintering. The effects of sintering temperature on the negative thermal expansion properties of the β-eucryptite are investigated by x-ray diffraction (XRD), scanning electron microscopy, and thermal expansion test. The XRD results exhibit no change in the crystal structure of the sample prepared by different sintering processes. The negative thermal expansion properties increase with the increase of the sintering temperature. The coefficient of thermal expansion of β-eucryptite ceramics sintered at 1100 ℃ is calculated to be -4.93×10-6-1. Crystallization behaviors of the ceramics may play an important role in the increase of negative thermal expansion of β-eucryptite. High sintering temperature could improve the crystallization behaviors of the ceramics and reduce the residue glass phase, which can improve the negative thermal expansion properties of β-eucryptite ceramics.

Keywords:  β-eucryptite      thermal expansion      structure      spark plasma sintering  
Received:  26 March 2018      Revised:  16 June 2018      Accepted manuscript online: 
PACS:  65.40.De (Thermal expansion; thermomechanical effects)  
  67.80.de (Structure, lattice dynamics and sound)  
  81.20.Ev (Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation)  
Fund: 

Project supported by the Programs for Tackling Key Problems in Science and Technology, Henan Province, China (Grant Nos. 172102210103, 182102310895, 182102210031, and 182102311079), the Doctoral Program of Henan Institute of Engineering, China (Grant Nos. D2016015 and D2016016), and the National-level College Students Innovative Entrepreneurial Training Plan Program, China (Grant No. 201611517041).

Corresponding Authors:  Hao-Shan Hao     E-mail:  hshhao@126.com

Cite this article: 

Li-Min Zhao(赵利敏), Yong-Guang Cheng(程永光), Hao-Shan Hao(郝好山), Jiao Wang(王娇), Shao-Hui Liu(刘少辉), Bao-Sen Zhang(张宝森) Properties of negative thermal expansion β-eucryptite ceramics prepared by spark plasma sintering 2018 Chin. Phys. B 27 096501

[1] Lichtenstein A I, Jones R O, Xu H and Heaney P J 1998 Phys. Rev. B 58 6219
[2] Li T, Liu X S, Cheng Y G, Ge X H, Zhang M D, Lian H, Zhang Y, Liang E J and Li Y X 2017 Chin. Phys. B 26 016501
[3] Pelletant A, Reveron H, Chêvalier J, Fantozzi G, Blanchard L, Guinot F and Falzon F 2012 Mater. Lett. 66 68
[4] Fei W D and Wang L D 2004 Mater. Chem. Phys. 85 450
[5] Fedorova A, Hourlier D and Scheffler M 2017 Ceram. Int. 43 4483
[6] Sheng J, Wang L, Li S, Yin B, Liu X and Fei W D 2016 Sci. Rep. 6 27118
[7] Xue Z W, Wang L D, Liu Z and Fei W D 2010 Scr. Mater. 62 867
[8] Sheng J, Wang L D, Li D, Cao W P, Feng Y, Wang M, Yang Z Y, Zhao Y and Fei W D 2017 Mater. & Design 132 442
[9] Chen Y, Manna S, Narayanan B, Wang Z, Reimanis I E and Ciobanu C V 2016 Scr. Mater. 122 64
[10] Cooper R C, Bruno G, Wheeler M R, Pandey A, Watkins T R and Shyam A 2017 Acta Mater. 135 361
[11] Benavente R, Salvador M D, Martínez-Amesti A, Fernández A and Borrell A 2016 Mater. Sci. Eng.:A 651 668
[12] Naskar M K and Chatterjee M 2005 Mater. Lett. 59 998
[13] Stanislavchuk T N, Middlemiss D S, Syzdek J S, Janssen Y, Basistyy R, Sirenko A A, Khalifah P G, Grey C P and Kostecki R 2017 J. Appl. Phys. 122 045107
[14] Choi D S 2016 Appl. Sci. Convergence Technol. 25 116
[15] Marcial J, Ahmadzadeh M and McCloy J S 2017 MRS Adv. 2 549
[16] Cheng Y, Liang Y, Ge X, Liu X, Yuan B, Guo J, Chao M J and Liang E J 2016 RSC Adv. 6 53657
[17] Gokhe U B, Koparkar K A and Omanwar S K 2016 J. Alloys Compd. 689 992
[18] Jeong B J, Joung M R, Kweon S H, Kim J S, Nahm S, Choi J W and Hwang S J 2012 J. Am. Ceram. Soc. 95 1811
[19] Ramalingam S and Reimanis I E 2012 J. Am. Ceram. Soc. 95 2939
[20] Takenaka K 2012 Sci. Technol. Advanced Mater. 13 013001
[21] Schulz H 1974 J. Am. Ceram. Soc. 57 313
[22] Xia L, Wen G W, Song L and Wang X Y 2010 Mater. Chem. Phys. 119 495
[23] Schuld S, Diekmann M, Schäfer M and Weitzel K M 2016 J. Appl. Phys. 120 185102
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[3] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[4] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[5] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[6] Spin pumping by higher-order dipole-exchange spin-wave modes
Peng Wang(王鹏). Chin. Phys. B, 2023, 32(3): 037601.
[7] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[8] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[9] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[10] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[11] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[12] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[13] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[14] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[15] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
No Suggested Reading articles found!