Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 094211    DOI: 10.1088/1674-1056/27/9/094211
Special Issue: SPECIAL TOPIC — Nanophotonics
SPECIAL TOPIC—Nanophotonics Prev   Next  

Enhancement and control of the Goos-Hänchen shift bynonlinear surface plasmon resonance in graphene

Qi You(游琪)1, Leyong Jiang(蒋乐勇)2, Xiaoyu Dai(戴小玉)1, Yuanjiang Xiang(项元江)1
1 Engineering Technology Research Center for;
2 D Material Information Function Devices and Systems of Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
2 College of Physics and Information Science, Hunan Normal University, Changsha 410081, China
Abstract  

The Goos-Hänchen (GH) shift of graphene in the terahertz frequency range is investigated, and an extremely high GH shift is obtained owing to the excitation of surface plasmon resonance in graphene in the modified Otto configuration. It is shown that the GH shift can be positive or negative, and can be enhanced by introducing a nonlinearity in the substrate. Large and bistable GH shifts are demonstrated to be due to the hysteretic behavior of the reflectance phase. The bistable GH shift can be manipulated by changing the thickness of the air gap and the Fermi level or relaxation time of graphene.

Keywords:  Goos-Hänchen shift      surface plasmon resonance      nonlinear optics  
Received:  29 April 2018      Revised:  26 May 2018      Accepted manuscript online: 
PACS:  42.65.-k (Nonlinear optics)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61505111).

Corresponding Authors:  Yuanjiang Xiang     E-mail:  xiangyuanjiang@126.com

Cite this article: 

Qi You(游琪), Leyong Jiang(蒋乐勇), Xiaoyu Dai(戴小玉), Yuanjiang Xiang(项元江) Enhancement and control of the Goos-Hänchen shift bynonlinear surface plasmon resonance in graphene 2018 Chin. Phys. B 27 094211

[1] Goos F and Hänchen H 1947 Ann. Phys. 1 333
[2] Goos F and Lindberghanchen H 1949 Ann. Phys. 5 251
[3] Artmann K 1948 Ann. Phys. 2 87
[4] Xiang Y J, Dai X Y and Wen S C 2007 Appl. Phys. A 87 285
[5] Jiang L Y, Wang Q K and Xiang Y J 2013 IEEE Photon. J. 5 6500108
[6] Dai X Y, Wen S C and Xiang Y J 2008 Acta Phys. Sin. 57 186 (in Chinese)
[7] Zhuang B X, Guo J, Xiang Y J, Dai X Y andWen S C 2013 Acta Phys. Sin. 62 054207 (in Chinese)
[8] Nie Y Y, Li Y H, Wu Z J, Wang X P, Yuan W and Sang M S 2014 Opt. Express 22 8943
[9] Tang T T, Li C Y, Luo L, Zhang Y F and Li J 2016 Appl. Phy. B 122 167
[10] Jiang L Y, Wu J P, Dai X Y and Xiang Y J 2014 Optik 125 7025
[11] Luo C Y, Dai X Y, Xiang Y J and Wen S C 2015 IEEE Photon. J. 7 6100310
[12] Bludov Y V, Vasilevskiy M I and Peres N M 2012 J. Appl. Phys. 112 084320
[13] Bretenaker F, Le Floch A and Dutriaux L 1992 Phys. Rev. Lett. 68 931
[14] Zhu B, Feng Y J, Zhao J M, Huang C and Jiang T 2010 Appl. Phys. Lett. 97 051906
[15] Wang Y, Liu Y and Wang B 2013 Superlattices Microstruct. 60 240
[16] Liu X B, Cao Z Q, Zhu P F, Shen Q S and Liu X M 2006 Phys. Rev. E 73 056617
[17] Shadrivov I V, Zharov A A and Kivshar Y S 2003 Appl. Phys. Lett. 83 2713
[18] Macedo R and Dumelow T 2013 SI 15 014013
[19] Li Q, Yu B Q, Li Z F, Wang X F, Zhang Z C and Pan L F 2017 Chin. Phys. B 26 085202
[20] Zhang T H, Yi M R, Fang Z Y, Yang H D, Yang J, Yang H Z, Kang H Z, Yang D P and Lu Y Z 2005 Physics 34 0
[21] Liu C P, Zhu X L, Zhang J X, Xu J, Wang Y L and Yu D P 2016 Chin. Phys. Lett. 33 087303
[22] Zhang X, Shi L, Li J, Xia Y J and Zhou S M 2017 Chin. Phys. B 26 117801
[23] Chen J N, Chen R K and Duan J H 2017 Chin. Phys. B 26 117802
[24] Yin X, Hesselink L and Liu Z 2004 Appl. Phys. Lett. 85 372
[25] Chen L, Liu X B, Cao Z Q and Zhuang S L 2011 J. Opt. 13 035002
[26] Yu W J, Sun H and Gao L 2018 Opt. Express 26 3956
[27] Yang Y, Liu J and Li Z Y 2015 Chin. Phys. B 24 074201
[28] Dhanabalan S C, Ponraj J S, Zhang H and Bao Q L 2016 Nanoscale 8 6410
[29] Ma J, Lu S B, Guo Z N, Xu X D, Zhang H, Tang D Y and Fan D Y 2015 Opt. Express 23 22643
[30] Xu Y H, Wang Z T, Guo Z N, Huang H, Xiao Q L, Zhang H and Yu X F 2016 Adv. Opt. Mater. 4 1223
[31] Kong L C, Qin Z P, Xie G Q, Guo Z N, Zhang H, Yuan P and Qian L J 2016 Laser Phys. Lett. 13 045801
[32] Zhang K, Liu J B, Hu X N, Feng L L, He W W, Hou S, Guo Y T, Ji Y L, Wu X C, Xiang Y J, Zhou W Y and Xie S S 2011 Physics 4 0
[33] Grigorenko A, Polini M and Novoselov K 2012 Nat. Photon. 6 749
[34] Castro NetoA H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[35] Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611
[36] Xu G D, Xu Y X, Sun J and Pan T 2016 Phys. Lett. A 380 2329
[37] Farmani A, Miri M and Sheikhi M H 2017 J. Opt. Soc. Am. B 34 1097
[38] Zeng X D, Al-Amri A and Zubairy M S 2017 Opt. Express 25 23579
[39] Sreekanth K V and Yu T 2013 J. Opt. 15 055002
[40] Dai X Y, Jiang L Y and Xiang Y J 2015 Opt. Express 23 6497
[41] Hill M T, Dorren H J, Vries T De, Leijtens X J, Den Besten J H, Smalbrugge B, Oei Y S, Binsma H, Khoe G D and Smit M K 2004 Nature 432 206
[42] Yanik M F, Fan S H, Soljačić M and Joannopoulos J D 2003 Opt. Lett. 28 2506
[43] Peyghambarian N and Gibbs H M 1985 Opt. Eng. 24 240168
[44] Gan C H 2012 Appl. Phys. Lett. 101 111609
[45] Chen W, Meng Z and Zhou H J 2012 Acta Phys. Sin. 61 184210 (in Chinese)
[46] Pu J X, Zhang G W and Su Q Q 2012 Acta Phys. Sin. 61 144208 (in Chinese)
[47] Sun Z R, Liang G, Wu P, Jia T Q, Sun Z R and Zhang S A 2017 Chin. Phys. B 26 083201
[48] Dai X Y, Jiang L Y and Xiang Y J 2015 Sci. Rep. 5 12271
[49] Jiang L Y, Guo J, Wu L M, Dai X Y and Xiang Y J 2015 Opt. Express 23 31181
[50] Guo J, Ruan B X, Zhu J Q, Dai X Y, Xiang Y J and Zhang H 2017 J. Phys. D:Appl. Phys. 50 434003
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[4] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[5] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[6] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
[7] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[8] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[9] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[10] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[11] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[12] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[13] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[14] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[15] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
No Suggested Reading articles found!