Special Issue:
SPECIAL TOPIC — Nanophotonics
|
|
|
Enhancement and control of the Goos-Hänchen shift bynonlinear surface plasmon resonance in graphene |
Qi You(游琪)1, Leyong Jiang(蒋乐勇)2, Xiaoyu Dai(戴小玉)1, Yuanjiang Xiang(项元江)1 |
1 Engineering Technology Research Center for;
2 D Material Information Function Devices and Systems of Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
2 College of Physics and Information Science, Hunan Normal University, Changsha 410081, China |
|
|
Abstract The Goos-Hänchen (GH) shift of graphene in the terahertz frequency range is investigated, and an extremely high GH shift is obtained owing to the excitation of surface plasmon resonance in graphene in the modified Otto configuration. It is shown that the GH shift can be positive or negative, and can be enhanced by introducing a nonlinearity in the substrate. Large and bistable GH shifts are demonstrated to be due to the hysteretic behavior of the reflectance phase. The bistable GH shift can be manipulated by changing the thickness of the air gap and the Fermi level or relaxation time of graphene.
|
Received: 29 April 2018
Revised: 26 May 2018
Accepted manuscript online:
|
PACS:
|
42.65.-k
|
(Nonlinear optics)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61505111). |
Corresponding Authors:
Yuanjiang Xiang
E-mail: xiangyuanjiang@126.com
|
Cite this article:
Qi You(游琪), Leyong Jiang(蒋乐勇), Xiaoyu Dai(戴小玉), Yuanjiang Xiang(项元江) Enhancement and control of the Goos-Hänchen shift bynonlinear surface plasmon resonance in graphene 2018 Chin. Phys. B 27 094211
|
[1] |
Goos F and Hänchen H 1947 Ann. Phys. 1 333
|
[2] |
Goos F and Lindberghanchen H 1949 Ann. Phys. 5 251
|
[3] |
Artmann K 1948 Ann. Phys. 2 87
|
[4] |
Xiang Y J, Dai X Y and Wen S C 2007 Appl. Phys. A 87 285
|
[5] |
Jiang L Y, Wang Q K and Xiang Y J 2013 IEEE Photon. J. 5 6500108
|
[6] |
Dai X Y, Wen S C and Xiang Y J 2008 Acta Phys. Sin. 57 186 (in Chinese)
|
[7] |
Zhuang B X, Guo J, Xiang Y J, Dai X Y andWen S C 2013 Acta Phys. Sin. 62 054207 (in Chinese)
|
[8] |
Nie Y Y, Li Y H, Wu Z J, Wang X P, Yuan W and Sang M S 2014 Opt. Express 22 8943
|
[9] |
Tang T T, Li C Y, Luo L, Zhang Y F and Li J 2016 Appl. Phy. B 122 167
|
[10] |
Jiang L Y, Wu J P, Dai X Y and Xiang Y J 2014 Optik 125 7025
|
[11] |
Luo C Y, Dai X Y, Xiang Y J and Wen S C 2015 IEEE Photon. J. 7 6100310
|
[12] |
Bludov Y V, Vasilevskiy M I and Peres N M 2012 J. Appl. Phys. 112 084320
|
[13] |
Bretenaker F, Le Floch A and Dutriaux L 1992 Phys. Rev. Lett. 68 931
|
[14] |
Zhu B, Feng Y J, Zhao J M, Huang C and Jiang T 2010 Appl. Phys. Lett. 97 051906
|
[15] |
Wang Y, Liu Y and Wang B 2013 Superlattices Microstruct. 60 240
|
[16] |
Liu X B, Cao Z Q, Zhu P F, Shen Q S and Liu X M 2006 Phys. Rev. E 73 056617
|
[17] |
Shadrivov I V, Zharov A A and Kivshar Y S 2003 Appl. Phys. Lett. 83 2713
|
[18] |
Macedo R and Dumelow T 2013 SI 15 014013
|
[19] |
Li Q, Yu B Q, Li Z F, Wang X F, Zhang Z C and Pan L F 2017 Chin. Phys. B 26 085202
|
[20] |
Zhang T H, Yi M R, Fang Z Y, Yang H D, Yang J, Yang H Z, Kang H Z, Yang D P and Lu Y Z 2005 Physics 34 0
|
[21] |
Liu C P, Zhu X L, Zhang J X, Xu J, Wang Y L and Yu D P 2016 Chin. Phys. Lett. 33 087303
|
[22] |
Zhang X, Shi L, Li J, Xia Y J and Zhou S M 2017 Chin. Phys. B 26 117801
|
[23] |
Chen J N, Chen R K and Duan J H 2017 Chin. Phys. B 26 117802
|
[24] |
Yin X, Hesselink L and Liu Z 2004 Appl. Phys. Lett. 85 372
|
[25] |
Chen L, Liu X B, Cao Z Q and Zhuang S L 2011 J. Opt. 13 035002
|
[26] |
Yu W J, Sun H and Gao L 2018 Opt. Express 26 3956
|
[27] |
Yang Y, Liu J and Li Z Y 2015 Chin. Phys. B 24 074201
|
[28] |
Dhanabalan S C, Ponraj J S, Zhang H and Bao Q L 2016 Nanoscale 8 6410
|
[29] |
Ma J, Lu S B, Guo Z N, Xu X D, Zhang H, Tang D Y and Fan D Y 2015 Opt. Express 23 22643
|
[30] |
Xu Y H, Wang Z T, Guo Z N, Huang H, Xiao Q L, Zhang H and Yu X F 2016 Adv. Opt. Mater. 4 1223
|
[31] |
Kong L C, Qin Z P, Xie G Q, Guo Z N, Zhang H, Yuan P and Qian L J 2016 Laser Phys. Lett. 13 045801
|
[32] |
Zhang K, Liu J B, Hu X N, Feng L L, He W W, Hou S, Guo Y T, Ji Y L, Wu X C, Xiang Y J, Zhou W Y and Xie S S 2011 Physics 4 0
|
[33] |
Grigorenko A, Polini M and Novoselov K 2012 Nat. Photon. 6 749
|
[34] |
Castro NetoA H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
|
[35] |
Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611
|
[36] |
Xu G D, Xu Y X, Sun J and Pan T 2016 Phys. Lett. A 380 2329
|
[37] |
Farmani A, Miri M and Sheikhi M H 2017 J. Opt. Soc. Am. B 34 1097
|
[38] |
Zeng X D, Al-Amri A and Zubairy M S 2017 Opt. Express 25 23579
|
[39] |
Sreekanth K V and Yu T 2013 J. Opt. 15 055002
|
[40] |
Dai X Y, Jiang L Y and Xiang Y J 2015 Opt. Express 23 6497
|
[41] |
Hill M T, Dorren H J, Vries T De, Leijtens X J, Den Besten J H, Smalbrugge B, Oei Y S, Binsma H, Khoe G D and Smit M K 2004 Nature 432 206
|
[42] |
Yanik M F, Fan S H, Soljačić M and Joannopoulos J D 2003 Opt. Lett. 28 2506
|
[43] |
Peyghambarian N and Gibbs H M 1985 Opt. Eng. 24 240168
|
[44] |
Gan C H 2012 Appl. Phys. Lett. 101 111609
|
[45] |
Chen W, Meng Z and Zhou H J 2012 Acta Phys. Sin. 61 184210 (in Chinese)
|
[46] |
Pu J X, Zhang G W and Su Q Q 2012 Acta Phys. Sin. 61 144208 (in Chinese)
|
[47] |
Sun Z R, Liang G, Wu P, Jia T Q, Sun Z R and Zhang S A 2017 Chin. Phys. B 26 083201
|
[48] |
Dai X Y, Jiang L Y and Xiang Y J 2015 Sci. Rep. 5 12271
|
[49] |
Jiang L Y, Guo J, Wu L M, Dai X Y and Xiang Y J 2015 Opt. Express 23 31181
|
[50] |
Guo J, Ruan B X, Zhu J Q, Dai X Y, Xiang Y J and Zhang H 2017 J. Phys. D:Appl. Phys. 50 434003
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|