CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Analysis of meniscus beneath metastable droplets and wetting transition on micro/nano textured surfaces |
Yanjie Li(李艳杰)2, Xiangqin Li(李香琴)1, Tianqing Liu(刘天庆)1, Weiguo Song(宋伟国)2 |
1 School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; 2 School of Pharmacy, Weifang Medical University, Weifang 261053, China |
|
|
Abstract The expressions of interface free energy (IFE) of composite droplets with meniscal liquid-air interface in metastable state on micro/nano textured surfaces were formulated. Then the parameters to describe the meniscus were determined based on the principle of minimum IFE. Furthermore, the IFE barriers and the necessary and sufficient conditions of drop wetting transition from Cassie to Wenzel were analyzed and the corresponding criteria were formulated. The results show that the liquid-air interface below a composite droplet is flat when the post pitches are relatively small, but in a shape of curved meniscus when the piteches are comparatively large and the curvature depends on structural parameters. The angle between meniscus and pillar wall is just equal to the supplementary angle of intrinsic contact angle of post material. The calculations also illustrate that Cassie droplets will transform to Wenzel state when post pitch is large enough or when drop volume is sufficiently small. The opposite transition from Wenzel to Cassie state, however, is unable to take place spontaneously because the energy barrier is always positive. Finally, the calculation results of this model are well consistent with the experimental observations in literatures for the wetting transition of droplets from Cassie to Wenzel state.
|
Received: 25 December 2017
Revised: 22 May 2018
Accepted manuscript online:
|
PACS:
|
68.08.-p
|
(Liquid-solid interfaces)
|
|
68.08.Bc
|
(Wetting)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 21676041). |
Corresponding Authors:
Tianqing Liu, Weiguo Song
E-mail: liutq@dlut.edu.cn;songwg@139.com
|
Cite this article:
Yanjie Li(李艳杰), Xiangqin Li(李香琴), Tianqing Liu(刘天庆), Weiguo Song(宋伟国) Analysis of meniscus beneath metastable droplets and wetting transition on micro/nano textured surfaces 2018 Chin. Phys. B 27 086801
|
[1] |
Werner O, Wågberg L and Lindström T 2005 Langmuir 21 1223
|
[2] |
Li W and Amirfazli A 2007 Adv. Colloid Interface 132 51
|
[3] |
Bahadur V and Garimella S V 2007 Langmuir 23 4918
|
[4] |
Extr, C W 2002 Langmuir 18 7991
|
[5] |
Kusumaatmaja H, Blow M L, Dupuis A and Yeomans J M 2008 Europhys. Lett. 81 36003
|
[6] |
Extr, C W 2004 Langmuir 20 5013
|
[7] |
Reyssat M, Yeomans J M and Quéré D 2008 Europhys. Lett. 81 26006
|
[8] |
Gross M, Varnik F, Raabe D and Steinbach I 2010 Phys. Rev. E 81 051606
|
[9] |
Papadopoulos P, Mammen L, Deng X, Vollmer D and Butt H J 2013 P. Natl. Acad. Sci. USA 110 3254
|
[10] |
Rykaczewski K, Landin T, Walker M L, Scott J H J and Varanasi K K 2012 ACS Nano 6 9326
|
[11] |
Rathgen H and Mugele F 2010 Faraday Discuss. 146 49
|
[12] |
Lv P, Xue Y, Shi Y, Lin H and Duan H 2014 Phys. Rev. Lett. 112 196101
|
[13] |
Oh J M, Manukyan G, Van den Ende D and Mugele F 2011 Europhys. Lett. 93 56001
|
[14] |
Manukyan G, Oh J M, Van Den Ende D, Lammertink R, Mugele F 2011 Phys. Rev. Lett. 106 014501
|
[15] |
Emami B, Tafreshi H V, Gad-el-Hak M and Tepper G 2011 Appl. Phys. Lett. 98 203106
|
[16] |
Lee J B, Gwon H R, Lee S H and Cho M 2010 Mater. Trans. 51 1709
|
[17] |
Xiu Y, Zhu L, Hess D W and Wong C 2007 Nano Lett. 7 3388
|
[18] |
Liu B and Lange F F 2006 J. Colloid Interf. Sci. 298 899
|
[19] |
David R and Neumann A W 2013 Colloid. Surf. A 425 51
|
[20] |
Ensikat H J, Schulte A J, Koch K and Barthlott W 2009 Langmuir 25 13077
|
[21] |
Bormashenko E, Pogreb R, Stein T, Whyman G, Erlich M, Musin A, Machavariani V and Aurbach D 2008 Phys. Chem. Chem. Phys. 10 4056
|
[22] |
Im M, Im H, Lee J H, Yoon J B and Choi Y K 2010 Langmuir 26 17389
|
[23] |
Shahraz A, Borhan A and Fichthorn K A 2012 Langmuir 28 14227
|
[24] |
Moradi S, Englezos P and Hatzikiriakos S G 2013 Colloid Polym. Sci. 291 317
|
[25] |
Barbieri L, Wagner E and Hoffmann P 2007 Langmuir 23 1723
|
[26] |
Xue Y, Chu S, Lv P and Duan H 2012 Langmuir 28 9440
|
[27] |
Quéré D 2008 Annu. Rev. Mater. Res. 38 71
|
[28] |
Whyman G and Bormashenko E 2012 J. Adhes. Sci. Technol. 26 207
|
[29] |
Xue Y, Lv P, Liu Y, Shi Y, Lin H and Duan H 2015 Phys. Fluids 27 092003
|
[30] |
Bormashenko E 2010 Philos. T. Roy. Soc. London A 368 4695
|
[31] |
Koishi T, Yasuoka K, Fujikawa S, Ebisuzaki T and Zeng X C 2009 P. Natl. Acad. Sci. USA 106 8435
|
[32] |
Zheng Q S, Yu Y and Zhao Z H 2005 Langmuir 21 12207
|
[33] |
Xue Y, Lv P, Lin H and Duan H 2016 Appl. Mech. Rev. 68 030803
|
[34] |
Migliaccio C P and Garimella S V 2012 Nanosc. Microsc. Therm. 16 154
|
[35] |
Jung Y and Bhushan B 2008 J. Microsc-Oxford 229 127
|
[36] |
Tsai P, Lammertink R G H, Wessling M and Lohse D 2010 Phys. Rev. Lett. 104 116102
|
[37] |
Lafuma A and Quéré D 2003 Nat. Mater. 2 457
|
[38] |
Patankar N A 2010 Langmuir 26 8941
|
[39] |
Patankar N A 2004 Langmuir 20 7097
|
[40] |
Checco A, Ocko B M, Rahman A, Black C T, Tasinkevych M, Giacomello A and Dietrich S 2014 Phys. Rev. Lett. 112 216101
|
[41] |
Kwon H M, Paxson A T, Varanasi K K and Patankar N A 2011 Phys. Rev. Lett. 106 036102
|
[42] |
Marengo M, Antonini C, Roisman I V and Tropea C 2011 Curr. Opin. Colloid . 16 292
|
[43] |
Whyman G and Bormashenko E 2011 Langmuir 27 8171
|
[44] |
Bormashenko E, Musin A, Whyman G and Zinigrad M 2012 Langmuir 28 3460
|
[45] |
Liu T Q, Li Y J, Li X Q and Sun W 2015 Chin. Phys. B 24 116801
|
[46] |
Boreyko J B, Baker C H, Poley C R and Chen C H 2011 Langmuir 27 7502
|
[47] |
Susarrey-Arce A, Marin A G, Nair H, Lefferts L, Gardeniers J, Lohse D and Van Hous A 2012 Soft Matter 8 9765
|
[48] |
He Y, Jiang C, Wang S, Yin H and Yuan W 2013 Appl. Surf. Sci. 285 682
|
[49] |
Luo C, Xiang M and Heng X 2012 Langmuir 28 9554
|
[50] |
Luo C, Xiang M 2012 Langmuir 28 13636
|
[51] |
Ma X H and Zhang Y 2003 J. Basic Sci. Eng. 12 268 (in Chinese)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|