Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 086801    DOI: 10.1088/1674-1056/27/8/086801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Analysis of meniscus beneath metastable droplets and wetting transition on micro/nano textured surfaces

Yanjie Li(李艳杰)2, Xiangqin Li(李香琴)1, Tianqing Liu(刘天庆)1, Weiguo Song(宋伟国)2
1 School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China;
2 School of Pharmacy, Weifang Medical University, Weifang 261053, China
Abstract  The expressions of interface free energy (IFE) of composite droplets with meniscal liquid-air interface in metastable state on micro/nano textured surfaces were formulated. Then the parameters to describe the meniscus were determined based on the principle of minimum IFE. Furthermore, the IFE barriers and the necessary and sufficient conditions of drop wetting transition from Cassie to Wenzel were analyzed and the corresponding criteria were formulated. The results show that the liquid-air interface below a composite droplet is flat when the post pitches are relatively small, but in a shape of curved meniscus when the piteches are comparatively large and the curvature depends on structural parameters. The angle between meniscus and pillar wall is just equal to the supplementary angle of intrinsic contact angle of post material. The calculations also illustrate that Cassie droplets will transform to Wenzel state when post pitch is large enough or when drop volume is sufficiently small. The opposite transition from Wenzel to Cassie state, however, is unable to take place spontaneously because the energy barrier is always positive. Finally, the calculation results of this model are well consistent with the experimental observations in literatures for the wetting transition of droplets from Cassie to Wenzel state.
Keywords:  interface free energy      droplet      wetting      transition      energy barrier  
Received:  25 December 2017      Revised:  22 May 2018      Accepted manuscript online: 
PACS:  68.08.-p (Liquid-solid interfaces)  
  68.08.Bc (Wetting)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 21676041).
Corresponding Authors:  Tianqing Liu, Weiguo Song     E-mail:  liutq@dlut.edu.cn;songwg@139.com

Cite this article: 

Yanjie Li(李艳杰), Xiangqin Li(李香琴), Tianqing Liu(刘天庆), Weiguo Song(宋伟国) Analysis of meniscus beneath metastable droplets and wetting transition on micro/nano textured surfaces 2018 Chin. Phys. B 27 086801

[1] Werner O, Wågberg L and Lindström T 2005 Langmuir 21 1223
[2] Li W and Amirfazli A 2007 Adv. Colloid Interface 132 51
[3] Bahadur V and Garimella S V 2007 Langmuir 23 4918
[4] Extr, C W 2002 Langmuir 18 7991
[5] Kusumaatmaja H, Blow M L, Dupuis A and Yeomans J M 2008 Europhys. Lett. 81 36003
[6] Extr, C W 2004 Langmuir 20 5013
[7] Reyssat M, Yeomans J M and Quéré D 2008 Europhys. Lett. 81 26006
[8] Gross M, Varnik F, Raabe D and Steinbach I 2010 Phys. Rev. E 81 051606
[9] Papadopoulos P, Mammen L, Deng X, Vollmer D and Butt H J 2013 P. Natl. Acad. Sci. USA 110 3254
[10] Rykaczewski K, Landin T, Walker M L, Scott J H J and Varanasi K K 2012 ACS Nano 6 9326
[11] Rathgen H and Mugele F 2010 Faraday Discuss. 146 49
[12] Lv P, Xue Y, Shi Y, Lin H and Duan H 2014 Phys. Rev. Lett. 112 196101
[13] Oh J M, Manukyan G, Van den Ende D and Mugele F 2011 Europhys. Lett. 93 56001
[14] Manukyan G, Oh J M, Van Den Ende D, Lammertink R, Mugele F 2011 Phys. Rev. Lett. 106 014501
[15] Emami B, Tafreshi H V, Gad-el-Hak M and Tepper G 2011 Appl. Phys. Lett. 98 203106
[16] Lee J B, Gwon H R, Lee S H and Cho M 2010 Mater. Trans. 51 1709
[17] Xiu Y, Zhu L, Hess D W and Wong C 2007 Nano Lett. 7 3388
[18] Liu B and Lange F F 2006 J. Colloid Interf. Sci. 298 899
[19] David R and Neumann A W 2013 Colloid. Surf. A 425 51
[20] Ensikat H J, Schulte A J, Koch K and Barthlott W 2009 Langmuir 25 13077
[21] Bormashenko E, Pogreb R, Stein T, Whyman G, Erlich M, Musin A, Machavariani V and Aurbach D 2008 Phys. Chem. Chem. Phys. 10 4056
[22] Im M, Im H, Lee J H, Yoon J B and Choi Y K 2010 Langmuir 26 17389
[23] Shahraz A, Borhan A and Fichthorn K A 2012 Langmuir 28 14227
[24] Moradi S, Englezos P and Hatzikiriakos S G 2013 Colloid Polym. Sci. 291 317
[25] Barbieri L, Wagner E and Hoffmann P 2007 Langmuir 23 1723
[26] Xue Y, Chu S, Lv P and Duan H 2012 Langmuir 28 9440
[27] Quéré D 2008 Annu. Rev. Mater. Res. 38 71
[28] Whyman G and Bormashenko E 2012 J. Adhes. Sci. Technol. 26 207
[29] Xue Y, Lv P, Liu Y, Shi Y, Lin H and Duan H 2015 Phys. Fluids 27 092003
[30] Bormashenko E 2010 Philos. T. Roy. Soc. London A 368 4695
[31] Koishi T, Yasuoka K, Fujikawa S, Ebisuzaki T and Zeng X C 2009 P. Natl. Acad. Sci. USA 106 8435
[32] Zheng Q S, Yu Y and Zhao Z H 2005 Langmuir 21 12207
[33] Xue Y, Lv P, Lin H and Duan H 2016 Appl. Mech. Rev. 68 030803
[34] Migliaccio C P and Garimella S V 2012 Nanosc. Microsc. Therm. 16 154
[35] Jung Y and Bhushan B 2008 J. Microsc-Oxford 229 127
[36] Tsai P, Lammertink R G H, Wessling M and Lohse D 2010 Phys. Rev. Lett. 104 116102
[37] Lafuma A and Quéré D 2003 Nat. Mater. 2 457
[38] Patankar N A 2010 Langmuir 26 8941
[39] Patankar N A 2004 Langmuir 20 7097
[40] Checco A, Ocko B M, Rahman A, Black C T, Tasinkevych M, Giacomello A and Dietrich S 2014 Phys. Rev. Lett. 112 216101
[41] Kwon H M, Paxson A T, Varanasi K K and Patankar N A 2011 Phys. Rev. Lett. 106 036102
[42] Marengo M, Antonini C, Roisman I V and Tropea C 2011 Curr. Opin. Colloid . 16 292
[43] Whyman G and Bormashenko E 2011 Langmuir 27 8171
[44] Bormashenko E, Musin A, Whyman G and Zinigrad M 2012 Langmuir 28 3460
[45] Liu T Q, Li Y J, Li X Q and Sun W 2015 Chin. Phys. B 24 116801
[46] Boreyko J B, Baker C H, Poley C R and Chen C H 2011 Langmuir 27 7502
[47] Susarrey-Arce A, Marin A G, Nair H, Lefferts L, Gardeniers J, Lohse D and Van Hous A 2012 Soft Matter 8 9765
[48] He Y, Jiang C, Wang S, Yin H and Yuan W 2013 Appl. Surf. Sci. 285 682
[49] Luo C, Xiang M and Heng X 2012 Langmuir 28 9554
[50] Luo C, Xiang M 2012 Langmuir 28 13636
[51] Ma X H and Zhang Y 2003 J. Basic Sci. Eng. 12 268 (in Chinese)
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[3] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[4] Transition frequencies between 2S and 2P states of lithium-like ions
Liming Wang(王黎明), Tongtong Liu(刘仝彤), Weiqing Yang(杨为青), and Zong-Chao Yan. Chin. Phys. B, 2023, 32(3): 033102.
[5] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[6] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[7] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[8] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[9] Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields
Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如). Chin. Phys. B, 2023, 32(2): 020505.
[10] Transition-edge sensors using Mo/Au/Au tri-layer films
Hubing Wang(王沪兵), Yue Lv(吕越), Dongxue Li(李冬雪), Yue Zhao(赵越), Bo Gao(高波), and Zhen Wang(王镇). Chin. Phys. B, 2023, 32(2): 028501.
[11] Fabrication of honeycomb AuTe monolayer with Dirac nodal line fermions
Qin Wang(汪琴), Jie Zhang(张杰), Jierui Huang(黄杰瑞), Jinan Shi(时金安), Shuai Zhang(张帅), Hui Guo(郭辉), Li Huang(黄立), Hong Ding(丁洪), Wu Zhou(周武), Yan-Fang Zhang(张艳芳), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2023, 32(1): 016102.
[12] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[13] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[14] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[15] Energy levels and magnetic dipole transition parameters for the nitrogen isoelectronic sequence
Mu-Hong Hu(胡木宏), Nan Wang(王楠), Pin-Jun Ouyang(欧阳品均),Xin-Jie Feng(冯新杰), Yang Yang(杨扬), and Chen-Sheng Wu(武晨晟). Chin. Phys. B, 2022, 31(9): 093101.
No Suggested Reading articles found!