Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 027802    DOI: 10.1088/1674-1056/27/2/027802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Optically induced abnormal terahertz absorption in black silicon

Dong-Wei Zhai(翟东为)1, Hai-Ling Liu(刘海玲)1, Xxx Sedao2, Yu-Ping Yang(杨玉平)1
1. School of Science, Minzu University of China, Beijing 100081, China;
2. Labo Hubert Curien, University of Lyon, France
Abstract  The absorption responses of blank silicon and black silicon (silicon with micro/nano-conical surface structures) wafers to an 808-nm continuous-wave (CW) laser are investigated at room temperature by terahertz time-domain spectroscopy. The transmission of the blank silicon shows an appreciable change, from ground state to the pump state, with amplitude varying up to 50%, while that of the black silicon (BS) with different cone sizes is observed to be more stable. Furthermore, the terahertz transmission through BS is observed to be strongly dependent on the size of the conical structure geometry. The conductivities of blank silicon and BS are extracted from the experimental data with and without pumping. The non-photo-excited conductivities increase with increasing frequency and agree well with the Lorentz model, whereas the photo-excited conductivities decrease with increasing frequency and fit well with the Drude-Smith model. Indeed, for BS, the conductivity, electron density and mobility are found to correlate closely with the size of the conical structure. This is attributed to the influence of space confinement on the carrier excitation, that is, the carriers excited at the BS conical structure surface have a stronger localization effect with a backscattering behavior in small-sized microstructures and a higher recombination rate due to increased electron interaction and collision with electrons, interfaces and grain boundaries.
Keywords:  terahertz spectroscopy      black silicon      ultrafast phenomena  
Received:  07 July 2017      Revised:  08 October 2017      Accepted manuscript online: 
PACS:  78.47.jh (Coherent nonlinear optical spectroscopy)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574408, 11504439, 61627814, and 61675238), the National Key Research and Development Program of China (Grant No. 2017YFB0405402), the National Instrumentation Program of China (Grant No. 2012YQ14000508), and the Young-talent Plan of State Affairs Commission, China (Grant No. 2016-3-02).
Corresponding Authors:  Yu-Ping Yang     E-mail:  ypyang_cun@126.com
About author:  78.47.jh; 73.63.-b; 42.65.Re

Cite this article: 

Dong-Wei Zhai(翟东为), Hai-Ling Liu(刘海玲), Xxx Sedao, Yu-Ping Yang(杨玉平) Optically induced abnormal terahertz absorption in black silicon 2018 Chin. Phys. B 27 027802

[1] Li B J, Zhou M, Zhang W, Amoako G and Gao C Y 2012 Appl. Surface Sci. 263 45
[2] Vorobyev A Y and Guo C L 2013 Laser & Photon. Rev. 7 385
[3] Ma Y C, Si J H, Sun X H, Chen T and Hou X 2014 Appl. Surf. Sci. 313 905
[4] Brongersma M L, Cui Y and Fan S H 2014 Nat. Mater. 13 451
[5] Savin H, Repo P, von Gastrow G, Ortega P, Calle E, Garin M and Alcubilla R 2015 Nat. Nanotechnol. 10 624
[6] Chen W H and Hong F C N 2016 Solar Energy Materials & Solar Cells 157 48
[7] Blumroder U, Zilk M, Hempel H, Hoyer P, Pertsch T, Eichberger R,Unold T and Nolte S 2017 Opt. Express. 25 6604
[8] Yang Y P, Zhang Z W, Shi Y L, Feng S and Wang W Z 2010 Chin. Phys. B 19 043302
[9] Yang Y P, Wang W Z, Zhang Z W, Zhang L L and Zhang C L 2011 J. Phys. Chem. C. 115 10333
[10] Trukhin V N, Bouravleuv A D, Mustafin I A, Kakko J P, Huhtio T,Cirlin G E and Lipsanen H 2015 Appl. Phys. Lett. 106 1
[11] Gladun A D, Leiman V G and Arsenin A V 2008 Physics
[12] Baxter J B and Schmuttenmaer C A 2006 Phys. Chem. B 110 25229
[13] Guo H C, Zhang X H, Liu W, Yong A M and Tang S H 2009 J. Appl. Phys. 106 63
[14] Porte H P, Turchinovich D, Persheyev S, Fan Y C, Rose M J and JepsenP U 2013 IEEE Trans. Terahertz Sci. Technol. 3 331
[15] Kuzel P and Nemec H 2014 J. Phys. D:Appl. Phys. 47 374005
[16] Lee W J, Ma J W, Bae J M, Jeong K S, Cho M H, Kang C and Wi J S2013 Sci. Rep. 3 1984
[17] Liu Y, Liu S, Wang Y, Feng G, Zhu J and Zhao L 2008 Laser Phys. 18 1148
[18] Winkler M T, Sher M J, Lin Y T, Smith M J, Zhang H F, Gradecak Sand Mazur E 2012 J. Appl. Phys. 111 093511
[19] Yang Y P, Cui B, Geng Z X and Feng S 2015 Appl. Phys. Lett. 106 111106
[20] Yang Y P, Lei X Y, Yue A and Zhang Z W 2013 Sci. China-Phys. Mech. & Astron. 56 713
[21] Dorney T D, Bataniuk G, Mittleman M 2001 J. Opt. Soc. Am. A 18 1562
[22] Yang Y P, Feng S, Feng h, Pan X C, Wang Y Q, Wang W Z 2011 Acta Phys. Sin. 60 027802(in Chinese)
[23] Balkanski M 1972 Optical Properties of Solids (New York) Chap. 8
[24] Zhou Q L, Shi Y L, Li T, Jin B, Zhao D M and Zhang C L 2009 Sci. China-Phys. Mech. & Astron. 52 1944
[25] Walther M, Cooke D G, Sherstan C, Hajar M, Freeman M R and Hegmann F A 2007 Phys. Rev. B 76 125408
[26] Cooke D G, Hegmann F A, Young E C and Tiedje T 2006 Appl. Phys. Lett. 89 122103
[27] Ostroverkhova O, Cooke D G, Shcherbyna S, Egerton R F and Hegmann F A 2005 Phys. Rev. B 71 035204
[28] Aspnes D E and Studna A A 1983 Phys. Rev. B 27 985
[29] Grischkowsky D, Keiding S, M. Exter M and Fattinger C 1990 Opt. Soc. Am. B 7 2006
[30] Ulbricht R, Hendry E, Shan J, Heinz T F and Bonn M 2017 Rev. Mod. Phys 89 029901
[31] Joyce H J, Docherty C J, Gao Q, Hoe T H, Chennupati J, James L H,Herz L M and Johnston M B 2013 Nanotechnology 24 1
[32] N V Smith 2001 Phys. Rev. B 64 155106
[33] Zou X Q, Luo J S, Lee D W, Cheng C W, Springer D, Naritha S K,Cheong S A, Fan H J and Chia E E M 2012 J. Phys. D:Appl. Phys. 45
[1] Wavelength- and ellipticity-dependent photoelectron spectra from multiphoton ionization of atoms
Keyu Guo(郭珂雨), Min Li(黎敏), Jintai Liang(梁锦台), Chuanpeng Cao(曹传鹏), Yueming Zhou(周月明), and Peixiang Lu((陆培祥). Chin. Phys. B, 2023, 32(2): 023201.
[2] Optically tuned dielectric characteristics of SrTiO3/Si thin film in the terahertz range
Bin Zou(邹斌), Qing-Qing Li(李晴晴), Yu-Ping Yang(杨玉平), and Hai-Zhong Guo(郭海中). Chin. Phys. B, 2021, 30(10): 107802.
[3] Temperature dependent terahertz giant anisotropy and cycloidal spin wave modes in BiFeO3 single crystal
Fan Liu(刘凡), Zuanming Jin(金钻明), Xiumei Liu(刘秀梅), Yuqing Fang(方雨青), Jiajia Guo(国家嘉), Yan Peng(彭滟), Zhenxiang Cheng(程振祥), Guohong Ma(马国宏), Yiming Zhu(朱亦鸣). Chin. Phys. B, 2020, 29(7): 077804.
[4] Imprint of transient electron localization in H2+ using circularly-polarized laser pulse
Jianghua Luo(罗江华), Jun Li(李军), and Huafeng Zhang(张华峰). Chin. Phys. B, 2020, 29(12): 123201.
[5] Time-resolved shadowgraphs and morphology analyses of aluminum ablation with multiple femtosecond laser pulses
Zehua Wu(吴泽华), Nan Zhang(张楠), Xiaonong Zhu(朱晓农), Liqun An(安力群), Gangzhi Wang(王刚志), Ming Tan(谭明). Chin. Phys. B, 2018, 27(7): 077901.
[6] Ultrafast electron diffraction
Xuan Wang(王瑄), Yutong Li(李玉同). Chin. Phys. B, 2018, 27(7): 076102.
[7] Terahertz time-domain spectroscopy of a simulated pore structure to probe particle size and porosity of porous rock
Dong Chen (董晨), Bao Ri-Ma (宝日玛), Zhao Kun (赵昆), Xu Chang-Hong (许长虹), Jin Wu-Jun (金武军), Zhong Shou-Xian (钟寿仙). Chin. Phys. B, 2014, 23(12): 127802.
[8] Realization of conformal doping on multicrystalline silicon solar cells and black silicon solar cells by plasma immersion ion implantation
Shen Ze-Nan (沈泽南), Xia Yang (夏洋), Liu Bang-Wu (刘邦武), Liu Jin-Hu (刘金虎), Li Chao-Bo (李超波), Li Yong-Tao (李勇滔). Chin. Phys. B, 2014, 23(11): 118801.
[9] Sunlight loss for femtosecond microstructured silicon with two impurity bands
Fang Jian(方健), Chen Chang-Shui(陈长水), Wang Fang(王芳), and Liu Song-Hao(刘颂豪). Chin. Phys. B, 2011, 20(7): 074202.
[10] Simulation study on terahertz vibrational absorption in liquid crystal compounds
Ma Heng(马恒), Shi De-Heng(施德恒), He Jun(赫君), and Peng Yu-Feng(彭玉峰). Chin. Phys. B, 2009, 18(3): 1085-1088.
No Suggested Reading articles found!