Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 014401    DOI: 10.1088/1674-1056/27/1/014401
Special Issue: TOPICAL REVIEW — Soft matter and biological physics
TOPICAL REVIEW—Soft matter and biological physics Prev   Next  

A review of recent theoretical and computational studies on pinned surface nanobubbles

Yawei Liu(刘亚伟), Xianren Zhang(张现仁)
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
Abstract  

The observations of long-lived surface nanobubbles in various experiments have presented a theoretical challenge, as they were supposed to be dissolved in microseconds owing to the high Laplace pressure. However, an increasing number of studies suggest that contact line pinning, together with certain levels of oversaturation, is responsible for the anomalous stability of surface nanobubbles. This mechanism can interpret most characteristics of surface nanobubbles. Here, we summarize recent theoretical and computational work to explain how the surface nanobubbles become stable with contact line pinning. Other related work devoted to understanding the unusual behaviors of pinned surface nanobubbles is also reviewed here.

Keywords:  surface nanobubble      contact line pinning      oversaturation      lattice density functional theory  
Received:  04 September 2017      Revised:  07 November 2017      Accepted manuscript online: 
PACS:  47.55.dp (Cavitation and boiling)  
  68.08.-p (Liquid-solid interfaces)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 91434204).

Corresponding Authors:  Xianren Zhang     E-mail:  zhangxr@mail.buct.edu.cn

Cite this article: 

Yawei Liu(刘亚伟), Xianren Zhang(张现仁) A review of recent theoretical and computational studies on pinned surface nanobubbles 2018 Chin. Phys. B 27 014401

[1] Lou S T, Ouyang Z Q, Zhang Y, Li X J, Hu J, Li M Q and Yang F J 2000 J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 18 2573
[2] Ishida N, Inoue T, Miyahara M and Higashitani K 2000 Langmuir 16 6377
[3] Parker J L, Claesson P M and Attard P 1994 J. Phys. Chem. 98 8468
[4] Carambassis A, Jonker L C, Attard P and Rutland M W 1998 Phys. Rev. Lett. 80 5357
[5] Sakamoto M, Kanda Y, Miyahara M and Higashitani K 2002 Langmuir 18 5713
[6] Tyrrell J W G and Attard P 2001 Phys. Rev. Lett. 87 176104
[7] Yang J, Duan J, Fornasiero D and Ralston J 2003 J. Phys. Chem. B 107 6139
[8] Zhang X H, Maeda N and Craig V S J 2006 Langmuir 22 5025
[9] Zhang L, Zhang Y, Zhang X, Li Z, Shen G, Ye M, Fan C, Fang H and Hu J 2006 Langmuir 22 8109
[10] Yang S, Dammer S M, Bremond N, Zandvliet H J W, Kooij E S and Lohse D 2007 Langmuir 23 7072
[11] Borkent B M, Dammer S M, Schönherr H, Vancso G J and Lohse D 2007 Phys. Rev. Lett. 98 204502
[12] Zhang X H, Quinn A and Ducker W A 2008 Langmuir 24 4756
[13] Van Limbeek M A J and Seddon J R T 2011 Langmuir 27 8694
[14] Zhao B, Wang X, Wang S, Tai R, Zhang L and Hu J 2016 Soft Matter 12 3303
[15] Zhang L, Zhang X, Fan C, Zhang Y and Hu J 2009 Langmuir 25 8860
[16] Switkes M and Ruberti J W 2004 Appl. Phys. Lett. 84 4759
[17] Steitz R, Gutberlet T, Hauss T, Klösgen B, Krastev R, Schemmel S, Simonsen A C and Findenegg G H 2003 Langmuir 19 2409
[18] Karpitschka S, Dietrich E, Seddon J R T, Zandvliet H J W, Lohse D and Riegler H 2012 Phys. Rev. Lett. 109 66102
[19] Chan C U and Ohl C D 2012 Phys. Rev. Lett. 109 174501
[20] Wang Y and Bhushan B 2010 Soft Matter 6 29
[21] Bhushan B, Pan Y and Daniels S 2013 J. Colloid Interface Sci. 392 105
[22] Hampton M A and Nguyen A V 2009 Miner. Eng. 22 786
[23] Wu Z H, Chen H B, Dong Y M, Mao H L, Sun J L, Chen S F, Craig V S J and Hu J 2008 J. Colloid Interface Sci. 328 10
[24] Liu G, Wu Z and Craig V S J 2008 J. Phys. Chem. C 112 16748
[25] Hampton M A and Nguyen A V. 2010 Adv. Colloid Interface Sci. 154 30
[26] Craig V S J 2011 Soft Matter 7 40
[27] Seddon J R T and Lohse D 2011 J. Phys. Condens. Matter 23 133001
[28] Epstein P S and Plesset M S 1950 J. Chem. Phys. 18 1505
[29] Alheshibri M, Qian J, Jehannin M and Craig V S J 2016 Langmuir 32 11086
[30] Brenner M P and Lohse D 2008 Phys. Rev. Lett. 101 214505
[31] Seddon J R T, Zandvliet H J W and Lohse D 2011 Phys. Rev. Lett. 107 116101
[32] Ducker W A 2009 Langmuir 25 8907
[33] Lohse D and Zhang X 2015 Rev. Mod. Phys. 87 981
[34] Liu Y and Zhang X 2013 J. Chem. Phys. 138 14706
[35] Weijs J H and Lohse D 2013 Phys. Rev. Lett. 110 54501
[36] Zhang X, Chan D Y C, Wang D and Maeda N 2013 Langmuir 29 1017
[37] Zhang X, Lhuissier H, Sun C and Lohse D 2014 Phys. Rev. Lett. 112 144503
[38] Chan C U, Chen L, Arora M and Ohl C D 2015 Phys. Rev. Lett. 114 114505
[39] Wang L, Wang X, Wang L, Hu J, Wang C L, Zhao B, Zhang X, Tai R, He M, Chen L and Zhang L 2017 Nanoscale 9 1078
[40] Tan B H, An H and Ohl C D 2017 Phys. Rev. Lett. 118 54501
[41] Wang Y, Li X, Ren S, Tedros Alem H, Yang L and Lohse D 2017 Soft Matter 13 5381
[42] Zhang X and Lohse D 2014 Biomicrofluidics 8 41301
[43] Attard P 2013 Eur. Phys. J. Spec. Top. 1
[44] Zhang L, Wang C, Tai R, Hu J and Fang H 2012 Chem. Phys Chem. 13 2188
[45] Becker R and Döring W 1935 Ann. Phys. 416 719
[46] Volmer M and Weber A 1926 Zeitschrift für Phys. Chemie 119 227
[47] Attard P 2016 Langmuir 32 11138
[48] Liu Y and Zhang X 2013 Phys. Rev. E 88 12404
[49] Wang X, Zhao B, Ma W, Wang Y, Gao X, Tai R, Zhou X and Zhang L 2015 Chem. Phys. Chem. 16 1003
[50] Lohse D and Zhang X 2015 Phys. Rev. E 91 031003
[51] Kierlik E, Monson P a, Rosinberg M L, Sarkisov L and Tarjus G 2001 Phys. Rev. Lett. 87 55701
[52] Monson P A 2008 J. Chem. Phys. 128 84701
[53] Edison J R and Monson P A 2009 J. Low Temp. Phys. 157 395
[54] Edison J R and Monson P A 2013 Langmuir 29 13808
[55] Men Y, Yan Q, Jiang G, Zhang X and Wang W 2009 Phys. Rev. E 79 51602
[56] Men Y and Zhang X 2012 J. Chem. Phys. 136 124704
[57] Guo Z, Liu Y and Zhang X 2015 Sci. Bull. 60 320
[58] Liu Y, Men Y and Zhang X 2011 H J. Chem. Phys. 135 184701
[59] Liu Y, Men Y and Zhang X 2012 J. Chem. Phys. 137 104701
[60] Guo Q, Liu Y, Jiang G and Zhang X 2013 J. Chem. Phys. 138 214701
[61] Guo Q, Liu Y, Jiang G and Zhang X 2014 Soft Matter 10 1182
[62] Li J, Liu Y, Jiang G and Zhang X 2016 Mol. Simul. 42 1
[63] Men Y, Zhang X and Wang W 2009 J. Chem. Phys. 131 184702
[64] Porcheron F and Monson P A 2006 Langmuir 22 1595
[65] Porcheron F, Monson P A and Schoen M 2006 Phys. Rev. E 73 41603
[66] Liu Y, Wang J, Zhang X and Wang W 2014 J. Chem. Phys. 140 54705
[67] Guo Z, Liu Y, Lohse D, Zhang X X and Zhang X X 2015 J. Chem. Phys. 142 244704
[68] Guo Z, Liu Y, Xiao Q and Zhang X 2016 Langmuir 32 11328
[69] Guo Z, Liu Y, Xiao Q, Schönherr H and Zhang X 2016 Langmuir 32 751
[70] Liu Y and Zhang X 2016 J. Chem. Phys. 145 214701
[71] Walczyk W and Schönherr H 2014 Langmuir 30 11955
[72] Liu Y and Zhang X 2014 J. Chem. Phys. 141 134702
[73] Maheshwari S, van der Hoef M, Zhang X and Lohse D 2016 Langmuir 32 11116
[74] Wei J, Zhang X and Song F 2016 Langmuir 32 13003
[75] Liu Y, Edwards M A, German S R, Chen Q and White H S 2017 Langmuir 33 1845
[76] Xiao Q, Liu Y, Guo Z, Liu Z, Lohse D and Zhang X 2017 Langmuir 33 8090
[77] Plimpton S 1995 J. Comput. Phys. 117 1
[78] Liu Y and Zhang X 2017 J. Chem. Phys. 146 164704
[79] Wang Y, Zaytsev M E, The H Le, Eijkel J C T, Zandvliet H J W, Zhang X and Lohse D 2017 ACS Nano 11 2045
[80] Chen S and Doolen G D 1998 Annu. Rev. Fluid Mech. 30 329
[81] Lhuissier H, Lohse D and Zhang X 2014 Soft Matter 10 942
[82] Hagar Alm El-Din, Zhang Y S and Medhat E 2012 Chin. Phys. Lett. 29 064703
[83] Shan M L, Zhu C P, Yao C, Yin C and Jiang X Y 2016 Chin. Phys. B 25 104701
[84] Mahdi D, Mohammad T R and Hamidreza M 2015 Chin. Phys. B 24 024302
[85] Wang C H and Cheng J C 2013 Chin. Phys. B 22 014304
[86] Liu X M, He J, Lu J and Ni X W 2008 Chin. Phys. B 17 2574
[87] Zhang Z Y, Yao X L and Zhang A M 2013 Acta Phys. Sin. 62 204701 (in Chinese)
[1] A study of cavitation nucleation in pure water using molecular dynamics simulation
Hua Xie(谢华), Yuequn Xu(徐跃群), and Cheng Zhong(钟成). Chin. Phys. B, 2022, 31(11): 114701.
[2] Effect of nonlinear translations on the pulsation of cavitation bubbles
Lingling Zhang(张玲玲), Weizhong Chen(陈伟中), Yang Shen(沈阳), Yaorong Wu(武耀蓉), Guoying Zhao(赵帼英), and Shaoyang Kou(寇少杨). Chin. Phys. B, 2022, 31(4): 044303.
[3] Investigation of cavitation bubble collapse in hydrophobic concave using the pseudopotential multi-relaxation-time lattice Boltzmann method
Minglei Shan(单鸣雷), Yu Yang(杨雨), Xuemeng Zhao(赵雪梦), Qingbang Han(韩庆邦), and Cheng Yao(姚澄). Chin. Phys. B, 2021, 30(4): 044701.
[4] Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM
Yu Yang(杨雨), Ming-Lei Shan(单鸣雷), Qing-Bang Han(韩庆邦), and Xue-Fen Kan(阚雪芬). Chin. Phys. B, 2021, 30(2): 024701.
[5] Bubble translation driven by pulsation in a double-bubble system
Ling-Ling Zhang(张玲玲), Wei-Zhong Chen(陈伟中), Yuan-Yuan Zhang(张圆媛), Yao-Rong Wu(武耀蓉), Xun Wang(王寻), Guo-Ying Zhao(赵帼英). Chin. Phys. B, 2020, 29(3): 034303.
[6] Drag reduction characteristics of heated spheres falling into water
Jia-Chuan Li(李佳川), Ying-Jie Wei(魏英杰), Cong Wang(王聪), Wei-Xue Xia(夏维学). Chin. Phys. B, 2018, 27(12): 124703.
[7] Cavity formation during water entry of heated spheres
Jia-Chuan Li(李佳川), Ying-Jie Wei(魏英杰), Cong Wang(王聪), Wei-Xue Xia(夏维学). Chin. Phys. B, 2018, 27(9): 094703.
[8] Theoretical analysis of interaction between a particle and an oscillating bubble driven by ultrasound waves in liquid
Yao-Rong Wu(武耀蓉), Cheng-Hui Wang(王成会). Chin. Phys. B, 2017, 26(11): 114303.
[9] Pseudopotential multi-relaxation-time lattice Boltzmann model for cavitation bubble collapse with high density ratio
Ming-Lei Shan(单鸣雷), Chang-Ping Zhu(朱昌平), Cheng Yao(姚澄), Cheng Yin(殷澄), Xiao-Yan Jiang(蒋小燕). Chin. Phys. B, 2016, 25(10): 104701.
[10] Study of acoustic bubble cluster dynamics using a lattice Boltzmann model
Mahdi Daemi, Mohammad Taeibi-Rahni, Hamidreza Massah. Chin. Phys. B, 2015, 24(2): 024302.
[11] Interaction of a bubble and a bubble cluster in an ultrasonic field
Wang Cheng-Hui (王成会), Cheng Jian-Chun (程建春). Chin. Phys. B, 2013, 22(1): 014304.
[12] The pressure field in the liquid column in the tube-arrest method
Ying Chong-Fu(应崇福), Li Chao(李超), Xu De-Long(徐德龙), and Deng Jing-Jun(邓京军) . Chin. Phys. B, 2008, 17(7): 2580-2593.
[13] Growth and collapse of laser-induced bubbles in glycerol--water mixtures
Liu Xiu-Mei(刘秀梅), He Jie(贺杰), Lu Jian(陆建), and Ni Xiao-Wu(倪晓武). Chin. Phys. B, 2008, 17(7): 2574-2579.
[14] Conical bubble photoluminescence from rhodamine 6G in 1, 2-propanediol
He Shou-Jie (何寿杰), Ai Xi-Cheng (艾希成), Dong Li-Fang (董丽芳), Chen De-Ying (陈得应), Wang Qi (王骐), Li Xue-Chen (李雪辰), Zhang Jian-Ping (张建平), Wang Long (王龙). Chin. Phys. B, 2006, 15(7): 1615-1620.
[15] Experimental investigation of the impact on nearby solid boundary during laser-generated bubble collapse
Chen Xiao (陈笑), Xu Rong-Qing (徐荣青), Shen Zhong-Hua (沈中华), Lu Jian (陆建), Ni Xiao-Wu (倪晓武). Chin. Phys. B, 2004, 13(4): 505-509.
No Suggested Reading articles found!