Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 047802    DOI: 10.1088/1674-1056/23/4/047802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Analysis and applications of a frequency selectivesurface via a random distribution method

Xie Shao-Yi (谢少毅)a, Huang Jing-Jian (黄敬健)a, Liu Li-Guo (刘立国)b, Yuan Nai-Chang (袁乃昌)a
a College of Electrical Science and Engineering, National University of Defense Technology, Changsha 410073, China;
b College of Electronic Engineering, Naval University of Engineering, Wuhan 430000, China
Abstract  A novel frequency selective surface (FSS) for reducing radar cross section (RCS) is proposed in this paper. This FSS is based on random distribution method, so it can be called random surface. In this paper the stacked patches serving as periodic elements are employed for RCS reduction. Previous work has demonstrated the efficiency by utilizing the microstrip patches, especially for the reflectarray. First, the relevant theory of the method is described. Then a sample of three-layer variable-sized stacked patch random surface with a dimension of 260 mm× 260 mm is simulated, fabricated, and measured in order to demonstrate the validity of the proposed design. For the normal incidence, the 8-dB RCS reduction can be achieved both by the simulation and the measurement in 8 GHz-13 GHz. The oblique incidence of 30° is also investigated, in which the 7-dB RCS reduction can be obtained in a frequency range of 8 GHz-14 GHz.
Keywords:  frequency selective surface      stacked patches      random surface      radar cross section reduction  
Received:  07 July 2013      Revised:  22 August 2013      Accepted manuscript online: 
PACS:  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
Corresponding Authors:  Xie Shao-Yi     E-mail:  xieshaoyi@foxmail.com

Cite this article: 

Xie Shao-Yi (谢少毅), Huang Jing-Jian (黄敬健), Liu Li-Guo (刘立国), Yuan Nai-Chang (袁乃昌) Analysis and applications of a frequency selectivesurface via a random distribution method 2014 Chin. Phys. B 23 047802

[1] Knott E F, Shaeffer J and Tuley M 1985 Radar Cross Section (Raleigh NC: Sci. Tech. Publishing) p. 477
[2] Liu L G, Wu W W, Mo J J, Fu Y Q and Yuan N C 2013 Chin. Phys. B 22 047802
[3] Jia H Y, Feng X G and Sheng C X 2012 Chin. Phys. B 21 054102
[4] Fan Y N, Cheng Y Z, Nie Y, Wang X and Gong R Z 2013 Chin. Phys. B 22 044102
[5] Li H, Yuan L H, Zhou B, Shen X P and Cui T J 2011 J. Appl. Phys. 110 014909
[6] Chang T K, Langley R J and Parker E A 1993 IEEE Microwave and Guided Wave Letters 3 387
[7] Chambers B 1997 Electron. Lett. 33 2073
[8] Chambers B and Tennant A 2004 IEEE Antennas and Propagation Magazine 46 23
[9] Chen J, Zhao J and Cheng Q 2013 National Conference on Microwave and Millimeter Wave (Chongqing: Publishing House of Electronics Industry) p. 1600 (in Chinese)
[10] Targonski S D and Pozar D M 1994 Antennas and Propagation Society International Symposium, June 20, 1994, Seattle WA, USA, p. 1820
[11] Pozar D M and Metzler T A 1993 Electron. Lett. 29 657
[12] Encinar J A and Zornoza J A 2003 IEEE Trans. Antennas Propag. 51 1662
[13] Encinar J A 2001 IEEE Trans. Antennas Propag. 49 1403
[14] Huang J 1991 Antennas and Propagation Society International Symposium, June 24, 1991, London, Ontario, Canada, p. 612
[15] Munson R E, Haddad H A and Hanlen J W U S Patent 4 684 952 [Aug. 1987]
[16] Encinar G J A E P Patent 1 120 856
[2006]
[17] Huang J and Encinar J A 2008 Reflectarray Antennas (Hoboken: John Wiley & Sons, Inc)
[18] Pozar D M 2004 International symposium on Antennas, November, 2004, Nice, France, p. 175
[19] Mittra R, Chan C H and Cwik T 1988 Proc. IEEE 76 1593
[1] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[2] Ultra-wideband low radar cross-section metasurface and its application on waveguide slot antenna array
Li-Li Cong(丛丽丽), Xiang-Yu Cao(曹祥玉), Tao Song(宋涛), Jun Gao(高军). Chin. Phys. B, 2018, 27(11): 114101.
[3] A linear-to-circular polarization converter based on I-shapedcircular frequency selective surfaces
Jia-Liang Wu(吴家梁), Bao-Qin Lin(林宝勤), Xin-Yu Da(达新宇), Kai Wu(吴凯). Chin. Phys. B, 2017, 26(9): 094201.
[4] Ultra-wideband RCS reduction using novel configured chessboard metasurface
Ya-Qiang Zhuang(庄亚强), Guang-Ming Wang(王光明), He-Xiu Xu(许河秀). Chin. Phys. B, 2017, 26(5): 054101.
[5] All-dielectric frequency selective surface design based on dielectric resonator
Zheng-Bin Wang(王正斌), Chao Gao(高超), Bo Li(李波), Zhi-Hang Wu(吴知航), Hua-Mei Zhang(张华美), Ye-Rong Zhang (张业荣). Chin. Phys. B, 2016, 25(6): 068101.
[6] Infrared transparent frequency selective surface based on iterative metallic meshes
Yu Miao (于淼), Xu Nian-Xi (徐念喜), Gao Jin-Song (高劲松). Chin. Phys. B, 2015, 24(3): 030701.
[7] Tunable wideband absorber based on resistively loaded lossy high-impedance surface
Dang Ke-Zheng (党可征), Shi Jia-Ming (时家明), Wang Jia-Chun (汪家春), Lin Zhi-Dan (林志丹), Wang Qi-Chao (王启超). Chin. Phys. B, 2015, 24(10): 104104.
[8] A dual-band flexible frequency selective surface with miniaturized elements and maximally flat (Butterworth) response
Wang Xiu-Zhi (王秀芝), Gao Jin-Song (高劲松), Xu Nian-Xi (徐念喜), Liu Hai (刘海). Chin. Phys. B, 2014, 23(4): 047303.
[9] Frequency-selective microwave polarization rotator using substrate-integrated waveguide cavities
Zuo Yu (左钰), Shen Zhong-Xiang (沈忠祥), Feng Yi-Jun (冯一军). Chin. Phys. B, 2014, 23(3): 034101.
[10] Design of a tunable frequency selective surface absorber as a loaded receiving antenna array
Lin Bao-Qin (林宝勤), Zhao Shang-Hong (赵尚弘), Wei Wei (魏伟), Da Xin-Yu (达新宇), Zheng Qiu-Rong (郑秋容), Zhang Heng-Yang (张衡阳), Zhu Meng (朱蒙). Chin. Phys. B, 2014, 23(2): 024201.
[11] Varactor-tunable frequency selective surface with an embedded bias network
Lin Bao-Qin (林宝勤), Qu Shao-Bo (屈绍波), Tong Chuang-Ming (童创明), Zhou Hang (周航), Zhang Heng-Yang (张衡阳), Li Wei (李伟). Chin. Phys. B, 2013, 22(9): 094103.
[12] An ultrathin wide-band planar metamaterial absorber based on fractal frequency selective surface and resistive film
Fan Yue-Nong (范跃农), Cheng Yong-Zhi (程用志), Nie Yan (聂彦), Wang Xian (王鲜), Gong Rong-Zhou (龚荣洲). Chin. Phys. B, 2013, 22(6): 067801.
[13] Analysis of frequency selective surface absorbers via a novel equivalent circuit method
Liu Li-Guo (刘立国), Wu Wei-Wei (吴微微), Mo Jin-Jun (莫锦军), Fu Yun-Qi (付云起), Yuan Nai-Chang (袁乃昌). Chin. Phys. B, 2013, 22(4): 047802.
[14] Dual-band frequency selective surface with large band separation and stable performance
Zhou Hang(周航), Qu Shao-Bo(屈绍波), Peng Wei-Dong(彭卫东), Lin Bao-Qin(林宝勤), Wang Jia-Fu(王甲富), Ma Hua(马华), Zhang Jie-Qiu(张介秋), Bai Peng(柏鹏), Wang Xu-Hua(王徐华), and Xu Zhuo(徐卓) . Chin. Phys. B, 2012, 21(5): 054101.
[15] Tunable frequency selective surface with a shorted ring slot
Jia Hong-Yan(贾宏燕), Feng Xiao-Guo(冯晓国), and Sheng Cui-Xia(盛翠霞) . Chin. Phys. B, 2012, 21(5): 054102.
No Suggested Reading articles found!