Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 017301    DOI: 10.1088/1674-1056/22/1/017301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Modeling of tunneling current in ultrathin MOS structure with interface trap charge and fixed oxide charge

Hu Bo (胡波), Huang Shi-Hua (黄仕华), Wu Feng-Min (吴锋民)
Physics Department, Zhejiang Normal University, Jinhua 321004, China
Abstract  A model based on analysis of self-consistent Poisson-Schrodinger equation is proposed to investigate the tunneling current of electrons in the inversion layer of a p-type metal-oxide-semiconductor (MOS) structure. In this model, the influences of interface trap charge (ITC) at the Si-SiO2 interface and fixed oxide charge (FOC) in the oxide region are taken into account, and one-band effective mass approximation is used. The tunneling probability is obtained by employing the transfer matrix method. Further, the effects of in-plane momentum on the quantization in the electron motion perpendicular to the Si-SiO2 interface of a MOS device are investigated. Theoretical simulation results indicate that both ITC and FOC have great influence on the tunneling current through a MOS structure when their densities are larger than 1012 cm-2, which results from the great change of bound electrons near the Si-SiO2 interface and the oxide region. Therefore, for real ultrathin MOS structures with ITC and FOC, this model can give a more accurate description for tunneling current in the inversion layer.
Keywords:  tunneling current      ultrathin oxide      interface trap charge      fixed oxide charge  
Received:  09 June 2012      Revised:  09 July 2012      Accepted manuscript online: 
PACS:  73.40.Jn (Metal-to-metal contacts)  
  73.50.-h (Electronic transport phenomena in thin films)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61076055), the Program for Innovative Research Team of Zhejiang Normal University of China (Grant No. 2007XCXTD-5), and the Open Program of Surface Physics Laboratory of Fudan University, China (Grant No. FDS KL2011_04).
Corresponding Authors:  Huang Shi-Hua     E-mail:  huangshihua@zjnu.cn

Cite this article: 

Hu Bo (胡波), Huang Shi-Hua (黄仕华), Wu Feng-Min (吴锋民) Modeling of tunneling current in ultrathin MOS structure with interface trap charge and fixed oxide charge 2013 Chin. Phys. B 22 017301

[1] Jiang X W and Li S S 2012 Chin. Phys. B 21 027304
[2] Simonetti O, Maurel T and Jourdain M 2002 J. Appl. Phys. 92 4449
[3] Nakhmedov E P, Wieczorek K, Burghardt H and Radehaus C 2005 J. Appl. Phys. 98 024506
[4] Nadimi E, Radehaus C, Nakhmedov E P and Wieczorek K 2006 J. Appl. Phys. 99 104501
[5] Pourghaderi M A, Magnus W, Soree B, Meuris M, Meyer K D and Heyns M 2009 Phys. Rev. B 80 085315
[6] Mao L F 2007 IEEE Electron Dev. Lett. 28 161
[7] Mao L F 2007 Appl. Phys. Lett. 91 123519
[8] Margaritondo G 1999 Rep. Prog. Phys. 62 765
[9] Arnold E 1995 Appl. Phys. Lett. 66 3027
[10] Pei L R, Duscher G, Steen C and Pichler P 2008 J. Appl. Phys. 104 043507
[11] Huang A P, Zheng X H, Xiao Z S, Yang Z C, Wang M, Paul K C and Yang X D 2011 Chin. Phys. B 20 097303
[12] Du G, Liu X Y, Xia Z L,Yang J F and Han R Q 2010 Chin. Phys. B 19 057304
[13] Aktsipetrov O A, Fedyanin A A, Mishina E D and Rubtsov A N 1996 Phys. Rev. B 54 1825
[14] Laikhtman B and Solomon P M 2005 Phys. Rev. B 72 125338
[15] Rana F, Tiwari S and Buchanan D A 1996 Appl. Phys. Lett. 69 1104
[16] Snider G L, Tan I H and Hu E L 1990 J. Appl. Phys. 68 2849
[17] Tan I H, Snider G L and Hu E L 1990 J. Appl. Phys. 68 4071
[18] Liu X D, Fedkiw R P and Kang M 1999 J. Comput. Phys. 154 393
[19] Chern I L and Shu Y C 2007 J. Comput. Phys. 225 2138
[20] Ando Y and Itoh T 1987 J. Appl. Phys. 61 1497
[21] Yang N, Henson W K, Hauser J R and Wortman J J 1999 IEEE Trans. Electron Dev. 46 1464
[22] Allen F G and Gobeli G W 1962 Phys. Rev. 127 150
[1] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[2] Single-electron transport through single and coupling dopant atoms in silicon junctionless nanowire transistor
Xiao-Di Zhang(张晓迪), Wei-Hua Han(韩伟华), Wen Liu(刘雯), Xiao-Song Zhao(赵晓松), Yang-Yan Guo(郭仰岩), Chong Yang(杨冲), Jun-Dong Chen(陈俊东), Fu-Hua Yang(杨富华). Chin. Phys. B, 2019, 28(12): 127302.
[3] Shot noise in electron transport through a double quantum dot: a master equation approach
Ou-Yang Shi-Hua(欧阳仕华), Lam Chi-Hang(林志恒), and You Jian-Qiang(游建强). Chin. Phys. B, 2010, 19(5): 050519.
[4] Actions of negative bias temperature instability (NBTI) and hot carriers in ultra-deep submicron p-channel metal--oxide--semiconductor field-effect transistors (PMOSFETs)
Liu Hong-Xia (刘红侠) and Hao Yue (郝跃). Chin. Phys. B, 2007, 16(7): 2111-2115.
[5] Hot-carrier degradation characteristics and explanation in 0.25μm PMOSFETs
Liu Hong-Xia (刘红侠), Hao Yue (郝跃), Hawkins I. D., Peaker A. R.. Chin. Phys. B, 2005, 14(8): 1644-1648.
No Suggested Reading articles found!