Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 085204    DOI: 10.1088/1674-1056/26/8/085204
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Fast parallel Grad-Shafranov solver for real-time equilibrium reconstruction in EAST tokamak using graphic processing unit

Yao Huang(黄耀)1, Bing-Jia Xiao(肖炳甲)1,2, Zheng-Ping Luo(罗正平)1
1 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China;
2 School of Nuclear Science & Technology, University of Science & Technology of China, Hefei 230027, China
Abstract  

To achieve real-time control of tokamak plasmas, the equilibrium reconstruction has to be completed sufficiently quickly. For the case of an EAST tokamak experiment, real-time equilibrium reconstruction is generally required to provide results within 1ms. A graphic processing unit (GPU) parallel Grad-Shafranov (G-S) solver is developed in P-EFIT code, which is built with the CUDATM architecture to take advantage of massively parallel GPU cores and significantly accelerate the computation. Optimization and implementation of numerical algorithms for a block tri-diagonal linear system are presented. The solver can complete a calculation within 16 μs with 65×65 grid size and 27 μs with 129×129 grid size, and this solver supports that P-EFIT can fulfill the time feasibility for real-time plasma control with both grid sizes.

Keywords:  tokamak      Grad-Shafranov equation      equilibrium reconstruction      GPU parallel computation  
Received:  22 February 2017      Revised:  01 April 2017      Accepted manuscript online: 
PACS:  52.55.Fa (Tokamaks, spherical tokamaks)  
  52.55.-s (Magnetic confinement and equilibrium)  
  52.65.Kj (Magnetohydrodynamic and fluid equation)  
Fund: 

Project supported by the National Magnetic Confinement Fusion Research Program of China (Grant No. 2014GB103000), the National Natural Science Foundation of China (Grant No. 11575245), and the National Natural Science Foundation of China for Youth (Grant No. 11205191).

Corresponding Authors:  Zheng-Ping Luo     E-mail:  zhpluo@ipp.ac.cn
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Yao Huang(黄耀), Bing-Jia Xiao(肖炳甲), Zheng-Ping Luo(罗正平) Fast parallel Grad-Shafranov solver for real-time equilibrium reconstruction in EAST tokamak using graphic processing unit 2017 Chin. Phys. B 26 085204

[1] Blum J, Boulbe C and Faugeras B 2009 J. Comput. Phys. 231 960
[2] Ferron J R, Walker M L, Lao L L, St. John H E, Humphreys D A and Leuer J A 2002 Nucl. Fusion 38 1055
[3] Lao L L, John H S, Stambaugh R D, Kellman A G and Pfeiffer W 2011 Nucl. Fusion 25 1611
[4] Lao L L, Ferron J R, Groebner R J, Howl W, John H S, Strait E J and Taylor T S 1990 Nucl. Fusion 30 1035
[5] Lao L L, John H E S, Peng Q, Ferron J R, Strait E J, Taylor T S, Meyer W H, Zhang C and You K I 2005 Fusion Sci. Technol. 48 968
[6] Rampp M, Preuss R, Fischer R, Hallatschek K and Giannone L 2012 Fusion Sci. Technol. 62 409
[7] Moret J M, Duval B P, Le H B, Coda S, Felici F and Reimerdes H 2015 Fusion Eng. Design 91 1
[8] Giannone L, Fischer R, Mccarthy P J, Odstrcil T, Zammuto I, Bock A, Conway G, Fuchs J C, Gude A, Igochine V, Kallenbach A, Lackner K, Maraschek M, Rapson C, Ruan Q, Schuhbeck K H, Suttrop W, Wenzel L and ASDEX Upgrade Teama 2015 Fusion Eng. Design 100 519
[9] Yue X N, Xiao B J, Luo Z P and Guo Y 2013 Plasma Phys. Control. Fusion 55 085016
[10] Huang Y, Xiao B J, Luo Z P, Yuan Q P, Pei X F and Yue X N 2016 Fusion Eng. Design 112 1019
[11] NVIDIA 2016 CUDA C Programming guide v. 8.0
[12] Buneman O 1969 A compact non-iterative poisson solver Computers
[13] Buzbee B L, Dorr F W, George J A and Golub G H 1970 Siam J. Num. Anal. 8 722
[14] Hagenow K V and Lackner K 1975 Proc. 7th Conf. Numerical Simulation of Plasmas, June 2-4, New York, USA, p. 140
[15] Yue X N, Xiao B J, Luo Z P 2013 Comput. Sci. 40 21 (in Chinese)
[16] Hillis W D and Jr G L S 1986 Communications of the Acm 29 1170
[17] Schill R A 2003 IEEE Trans. Magn. 39 961
[18] Ren Q, Chu M S, Lao L L and Srinivasan R 2011 Plasma Phys. Control. Fusion 53 095009
[19] Xiao B J, Humphreys D A, Walker M L, Hyatt A, Leuer J A, Mueller D, Penaflor B G, Pigrowski D A, Johnson R D, Welander A, Yuan Q P, Wang H Z, Luo J R, Luo Z P, Liu C Y, Liu L Z and Zhang K 2008 Fusion Eng. Design 83 181
[20] Yuan Q P, Xiao B J, Luo Z P, Walker M L, Welander A S, Hyatt A, Qian J P, Zhang R R, Humphreys D A, Leuer J A, Johnson R D, Penaflor B G, Mueller D 2013 Nucl. Fusion 53 043009
[21] Fu P, Liu Z Z, Gao G and Yang L 2010 IEEE Conference on Industrial Electronics and Applications, June 15-17, 2010, Taichung, Taiwan, Vol. 10, p. 457
[22] Xiao B J, Yuan Q P, Luo Z P, Huang Y, Liu L, Guo Y, Pei X F, Chen S L, Humphreys D A, Hyatt A, Mueller D, Calabróe G, Crisantie F and Albanesef R 2016 Fusion Eng. Design 112 660
[23] Guo Y, Xiao B J, Liu L, Yang F, Wang Y H and Qiu Q L 2016 Chin. Phys. B 25 115201
[24] Huang Y, Lao L L, Xiao B J, Luo Z P and Yue X N 2015 57th Annual Meeting of the APS Division of Plasma Physics, November 16-20, 2015, Savannah, USA, APS Meeting Abstracts
[25] Pascal architecture whitepaper, NVIDIA Tesla P100-The Most Advanced Data Center Accelerator Ever Built,http://www.nvidia.com/object/pascal-architecture-whitepaper.html
[1] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[2] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[3] Study on divertor plasma behavior through sweeping strike point in new lower divertor on EAST
Yu-Qiang Tao(陶余强), Guo-Sheng Xu(徐国盛), Ling-Yi Meng(孟令义), Rui-Rong Liang(梁瑞荣), Lin Yu(余林), Xiang Liu(刘祥), Ning Yan(颜宁), Qing-Quan Yang(杨清泉), Xin Lin(林新), and Liang Wang(王亮). Chin. Phys. B, 2022, 31(6): 065204.
[4] Observation of trapped and passing runaway electrons by infrared camera in the EAST tokamak
Yong-Kuan Zhang(张永宽), Rui-Jie Zhou(周瑞杰), Li-Qun Hu(胡立群), Mei-Wen Chen(陈美文), Yan Chao(晁燕), Jia-Yuan Zhang(张家源), and Pan Li(李磐). Chin. Phys. B, 2021, 30(5): 055206.
[5] Nonlinear simulation of multiple toroidal Alfvén eigenmodes in tokamak plasmas
Xiao-Long Zhu(朱霄龙), Feng Wang(王丰), Zheng-Xiong Wang(王正汹). Chin. Phys. B, 2020, 29(2): 025201.
[6] Discharge simulation and volt-second consumption analysis during ramp-up on the CFETR tokamak
Cheng-Yue Liu(刘成岳), Bin Wu(吴斌), Jin-Ping Qian(钱金平), Guo-Qiang Li(李国强), Ya-Wei Hou(侯雅巍), Wei Wei(韦维), Mei-Xia Chen(陈美霞), Ming-Zhun Lei(雷明准), Yong Guo(郭勇). Chin. Phys. B, 2020, 29(2): 025202.
[7] Effect of edge transport barrier on required toroidal field for ignition of elongated tokamak
Cui-Kun Yang(杨翠坤), Ming-Sheng Chu(朱名盛), Wen-Feng Guo(郭文峰). Chin. Phys. B, 2019, 28(4): 045202.
[8] Synchrotron radiation intensity and energy of runaway electrons in EAST tokamak
Y K Zhang(张永宽), R J Zhou(周瑞杰), L Q Hu(胡立群), M W Chen(陈美文), Y Chao(晁燕), EAST team. Chin. Phys. B, 2018, 27(5): 055206.
[9] Energetic-ion excited internal kink modes with weak magnetic shear in q0 >1 tokamak plasmas
Wen-Ming Chen(陈文明), Xiao-Gang Wang(王晓钢), Xian-Qu Wang(王先驱), Rui-Bin Zhang(张瑞斌). Chin. Phys. B, 2017, 26(8): 085201.
[10] Simulations of the effects of density and temperature profile on SMBI penetration depth based on the HL-2A tokamak configuration
Xueke Wu(吴雪科), Huidong Li(李会东), Zhanhui Wang(王占辉), Hao Feng(冯灏), Yulin Zhou(周雨林). Chin. Phys. B, 2017, 26(6): 065201.
[11] A divertor plasma configuration design method for tokamaks
Yong Guo(郭勇), Bing-Jia Xiao(肖炳甲), Lei Liu(刘磊), Fei Yang(杨飞), Yuehang Wang(汪悦航), Qinglai Qiu (仇庆来). Chin. Phys. B, 2016, 25(11): 115201.
[12] Effects of q-profiles of a weak magnetic shear on energetic ion excited q=1 mode in tokamak plasmas
Ze-Yu Li(李泽宇), Xian-Qu Wang(王先驱), Xiao-Gang Wang(王晓钢). Chin. Phys. B, 2016, 25(1): 015203.
[13] Start-up phase plasma discharge design of a tokamak via control parameterization method
Guo Shan (郭珊), Xu Ke (许珂), Xu Chao (许超), Ren Zhi-Gang (任志刚), Xiao Bing-Jia (肖炳甲). Chin. Phys. B, 2015, 24(3): 035202.
[14] Simulations of the L–H transition dynamics with different heat and particle sources
Li Hui-Dong (李会东), Wang Zhan-Hui (王占辉), Jan Weiland, Feng Hao (冯灏), Sun Wei-Guo (孙卫国). Chin. Phys. B, 2015, 24(11): 115204.
[15] Growth rate of peeling mode in the near separatrix region of diverted tokamak plasma
Shi Bing-Ren (石秉仁). Chin. Phys. B, 2014, 23(1): 015202.
No Suggested Reading articles found!