Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 038401    DOI: 10.1088/1674-1056/26/3/038401
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Dye-sensitized solar cell module realized photovoltaic and photothermal highly efficient conversion via three-dimensional printing technology

Qi-Zhang Huang(黄启章)1,2, Yan-Qing Zhu(朱艳青)1,2, Ji-Fu Shi(史继富)1,3, Lei-Lei Wang(王雷雷)1, Liu-Wen Zhong(钟柳文)1, Gang Xu(徐刚)1
1 Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Department of Physics and Siyuan Laboratory, Jinan University, Guangzhou 510632, China
Abstract  

Three-dimensional (3D) printing technology is employed to improve the photovoltaic and photothermal conversion efficiency of dye-sensitized solar cell (DSC) module. The 3D-printed concentrator is optically designed and improves the photovoltaic efficiency of the DSC module from 5.48% to 7.03%. Additionally, with the 3D-printed microfluidic device serving as water cooling, the temperature of the DSC can be effectively controlled, which is beneficial for keeping a high photovoltaic conversion efficiency for DSC module. Moreover, the 3D-printed microfluidic device can realize photothermal conversion with an instantaneous photothermal efficiency of 42.1%. The integrated device realizes a total photovoltaic and photothermal conversion efficiency of 49% at the optimal working condition.

Keywords:  3D printing      dye-sensitized solar cell module      concentrator      microfluidic  
Received:  09 October 2016      Revised:  07 December 2016      Accepted manuscript online: 
PACS:  84.60.Jt (Photoelectric conversion)  
  88.40.-j (Solar energy)  
  88.40.F- (Solar concentrators)  
  88.40.hj (Efficiency and performance of solar cells)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 21103194, 51506205, and 21673243), the Science and Technology Planning Project of Guangdong Province, China (Grant Nos. 2014A010106018 and 2013A011401011), the Guangdong-Hong Kong Joint Innovation Project of Guangdong Province, China (Grant No. 2014B050505015), the Special Support Program of Guangdong Province, China (Grant No. 2014TQ01N610), the Director Innovation Foundation of Guangzhou Institute of Energy Conversion, China (Grant No. y307p81001), and the Solar Photothermal Advanced Materials Engineering Research Center Construction Project of Guangdong Province, China (Grant No. 2014B090904071).

Corresponding Authors:  Ji-Fu Shi, Gang Xu     E-mail:  shijf@ms.giec.ac.cn;xugang@ms.giec.ac.cn

Cite this article: 

Qi-Zhang Huang(黄启章), Yan-Qing Zhu(朱艳青), Ji-Fu Shi(史继富), Lei-Lei Wang(王雷雷), Liu-Wen Zhong(钟柳文), Gang Xu(徐刚) Dye-sensitized solar cell module realized photovoltaic and photothermal highly efficient conversion via three-dimensional printing technology 2017 Chin. Phys. B 26 038401

[1] Sarsam W S, Kazi S N and Badarudin A 2015 Solar Energy 122 1245
[2] Feng L F, Zhao K, Dai H T, Wang S G and Sun X W 2016 Chin. Phys. B 25 037307
[3] Ma W, Zhang F and Meng S 2014 Chin. Phys. B 23 086801
[4] Mariani P, Vesce L and Carlo A D 2015 Semicond. Sci. Tech. 30
[5] Huang Y, Dai S Y, Chen S H, Hu L H, Kong F T, Kou D X and Jiang N Q 2010 Acta Phys. Chim. Sin. 59 643
[6] Stuckings M F and Blakers A W 1999 Sol. Energ. Mat. Sol. C 59 233
[7] Giordano F, Guidobaldi A, Petrolati E, Vesce L, Riccitelli R, Reale A, Brown T M and Carlo A D 2012 Prog. Photovoltaics 21 1653
[8] Buhbut S, Clifford J N, Kosa M, Anderson A Y, Shalom M, Major D T, Palomares E and Zaban A 2013 Energ. Environ. Sci. 6 3046
[9] O'regan B and Grätzel M 1991 Nature 353 737
[10] Wang H, Xu X Q, Shi J F and Xu G 2013 Acta Phys. Chim. Sin. 29 525
[11] Hagfeldt A, Boschloo G, Sun L, Kloo L and Pettersson H 2010 Chem. Rev. 110 6595
[12] Dai P P, Yang L, Liang M, Dong H H, Wang P, Zhang C Y, Sun Z and Xue S 2015 Acs Appl. Mater. Inter. 7 22436
[13] Yue J, Zhao P, Gerasimov J Y, Lagemaat M, Grotenhuis A, Rustema-Abbing M, Mei H C, Busscher H J, Herrmann A and Ren Y J 2015 Adv. Funct. Mater. 25 6756
[14] Anderson K B, Lockwood S Y, Martin R S and Spence D M 2013 Anal. Chem. 85 5623
[15] Gross B C, Erkal J L, Lockwood S Y, Chen C P and Spence D M 2014 Anal. Chem. 86 3240
[16] Khaled S A, Burley J C, Alexander M R and Roberts C J 2014 Int. J. Pharmaceut. 461 105
[17] Derby B 2012 Science 338 921
[18] Sun K, Wei T S, Ahn B Y, Seo J Y, Dillon S J and Lewis J A 2013 Adv. Mater. 25 4539
[19] Mannoor M S, Jiang Z, James T, Kong Y L, Malatesta K A, Soboyejo W O, Verma N, Gracias D H and McAlpine M C 2013 Nano Lett. 13 2634
[20] Kim K, Zhu W, Qu X, Aaronson C, McCall W R, Chen S and Sirbuly D J 2014 Acs Nano 8 9799
[21] Winston R 2005 Nonimaging Optics 264 76
[22] Waghmare S A and Gulhane N P 2016 Sol. Energy 137 165
[23] Huang S Y, Schlichthorl G, Nozik A J, Gratzel M and Frank A J 1997 J. Phys. Chem. B 101 2576
[24] Snaith H J, Schmidt-Mende L, Gratzel M and Chiesa M 2006 Phys. Rev. B 74
[25] Paul D I, Smyth M, Zacharopoulos A and Mondol J 2013 Solar Energy 33 3
[26] Kuang D, Wang P, Ito S, Zakeeruddin S M and Graetzel M 2006 J. Am. Chem. Soc. 128 7732
[27] Sebastian P J, Olea A, Campos J, Toledo J A and Gamboa S A 2004 Sol. Energ. Mat. Sol. C. 81 349
[28] Zhu T T, Diao Y H, Zhao Y H and Li F F 2016 Appl. Therm. Eng. 98 1201
[29] Zhao J F, Song Y C, Lam W H, Liu W G, Liu Y, Zhang Y and Wang D Y 2011 Energ. Convers. Manage 52 1343
[30] Mittelman G, Kribus A and Dayan A 2007 Energ. Convers. Manage 48 2483
[1] Biophysical model for high-throughput tumor and epithelial cell co-culture in complex biochemical microenvironments
Guoqiang Li(李国强), Yanping Liu(刘艳平), Jingru Yao(姚静如), Kena Song(宋克纳), Gao Wang(王高), Lianjie Zhou(周连杰), Guo Chen(陈果), and Liyu Liu(刘雳宇). Chin. Phys. B, 2022, 31(2): 028703.
[2] Effect of external electric field on the terahertz transmission characteristics of electrolyte solutions
Jia-Hui Wang(王佳慧), Guo-Yang Wang(王国阳), Xin Liu(刘欣), Si-Yu Shao(邵思雨), Hai-Yun Huang(黄海云), Chen-Xin Ding(丁晨鑫), Bo Su(苏波), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2021, 30(11): 110204.
[3] Droplets breakup via a splitting microchannel
Wei Gao(高崴), Cheng Yu(于程), Feng Yao(姚峰). Chin. Phys. B, 2020, 29(5): 054702.
[4] Microfluidic temperature sensor based on temperature-dependent dielectric property of liquid
Qi Liu(刘琦), Yu-Feng Yu(俞钰峰), Wen-Sheng Zhao(赵文生), Hui Li(李慧). Chin. Phys. B, 2020, 29(1): 010701.
[5] New design of ferroelectric solar cell combined with luminescent solar concentrator
Slimane Latreche, Mohamed Fathi, Abderrahmane Kadri. Chin. Phys. B, 2019, 28(8): 088801.
[6] Numerical simulation on dynamic behaviors of bubbles flowing through bifurcate T-junction in microfluidic device
Liang-Yu Wu(吴梁玉), Ling-Bo Liu(刘凌波), Xiao-Tian Han(韩笑天), Qian-Wen Li(李倩文), Wei-Bo Yang(杨卫波). Chin. Phys. B, 2019, 28(10): 104702.
[7] Application of millimeter-sized polymer cylindrical lens array concentrators in solar cells
Yao-Ju Zhang(张耀举), Yi-Jie Li(李艺杰), Jie Lin(林洁), Chao-Long Fang(方朝龙), Si-Yuan Liu(刘思远). Chin. Phys. B, 2018, 27(5): 058801.
[8] Surface-tension-confined droplet microfluidics
Xinlian Chen(陈新莲), Han Wu(伍罕), Jinbo Wu(巫金波). Chin. Phys. B, 2018, 27(2): 029202.
[9] Controlled generation of cell-laden hydrogel microspheres with core-shell scaffold mimicking microenvironment of tumor
Yuenan Li(李岳南), Miaomiao Hai(海苗苗), Yu Zhao(赵宇), Yalei Lv(吕亚蕾), Yi He(何益), Guo Chen(陈果), Liyu Liu(刘雳宇), Ruchuan Liu(刘如川), Guigen Zhang. Chin. Phys. B, 2018, 27(12): 128703.
[10] Anisotropic transport of microalgae Chlorella vulgaris in microfluidic channel
Nur Izzati Ishak, S V Muniandy, Vengadesh Periasamy, Fong-Lee Ng, Siew-Moi Phang. Chin. Phys. B, 2017, 26(8): 088203.
[11] Theoretical simulation and analysis of large size BMP-LSC by 3D Monte Carlo ray tracing model
Feng Zhang(张峰), Ning-Ning Zhang(张宁宁), Yi Zhang(张义), Sen Yan(闫森), Song Sun(孙松), Jun Bao(鲍骏), Chen Gao(高琛). Chin. Phys. B, 2017, 26(5): 054201.
[12] In vitro three-dimensional cancer metastasis modeling: Past, present, and future
Wei-jing Han(韩伟静), Wei Yuan(袁伟), Jiang-rui Zhu(朱江瑞), Qihui Fan(樊琪慧), Junle Qu(屈军乐), Li-yu Liu(刘雳宇), on behalf of the U.S.--China Physical Sciences-Oncology Alliance. Chin. Phys. B, 2016, 25(1): 018709.
[13] Thermal modeling optimization and experimental validation for a single concentrator solar cell system with a heat sink
Cui Min (崔敏), Chen Nuo-Fu (陈诺夫), Deng Jin-Xiang (邓金祥), Liu Li-Ying (刘立英). Chin. Phys. B, 2013, 22(8): 084208.
[14] Automatic microcircuit formation based on gold-coated SU-8 microrods via dielectrophoresis
Ren Yu-Kun (任玉坤), Tao Ye (陶冶), Hou Li-Kai (侯立凯), Jiang Hong-Yuan (姜洪源). Chin. Phys. B, 2013, 22(8): 087701.
[15] Thermal modeling and the optimized design of metal plate cooling systems for single concentrator solar cells
Cui Min(崔敏), Chen Nuo-Fu(陈诺夫), and Deng Jin-Xiang(邓金祥) . Chin. Phys. B, 2012, 21(3): 034216.
No Suggested Reading articles found!