Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 096601    DOI: 10.1088/1674-1056/24/9/096601
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Viscosities and their correlations with structures of Cu-Ag melts

Zhao Yan (赵岩)a b, Hou Xiao-Xia (侯晓霞)a
a School of Mechanical and Electronical Engineering, Dezhou University, Dezhou 253023, China;
b Research Institute of Engineering Materials, Dezhou University, Dezhou 253023, China
Abstract  The viscosities of a series of Cu-Ag melts in a temperature range from 1473 K to nearly liquid temperatures are measured by using an oscillating viscometer. At the same temperature, the value of viscosity increases first with silver content increasing, and reaches a maximum value at the eutectic component Cu40Ag60, then decreases. All the temperature dependences of the viscosities of Cu-Ag melts conform with the Arrhenius equation. The parameters of correlation length D of the studied Cu-Ag melts are calculated according to the experimental results of x-ray diffraction. The temperature dependence of correlation length D shows an exponential decay function, which is similar to the Arrhenius equation. Based on the values of viscosities and correlation length D, a direct correlation between viscosity and liquid structure is found for the investigated Cu-Ag melts through comparative analysis.
Keywords:  viscosity      liquid structure      correlation length  
Received:  04 September 2014      Revised:  27 January 2015      Accepted manuscript online: 
PACS:  66.20.Ej (Studies of viscosity and rheological properties of specific liquids)  
  61.05.cp (X-ray diffraction)  
  61.25.Mv (Liquid metals and alloys)  
  66.20.Cy (Theory and modeling of viscosity and rheological properties, including computer simulation)  
Fund: Project supported by the Science and Technology Development Program of Shandong Province, China (Grant No. 2011YD03099) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2014EL001).
Corresponding Authors:  Zhao Yan     E-mail:  dzuzhy@126.com

Cite this article: 

Zhao Yan (赵岩), Hou Xiao-Xia (侯晓霞) Viscosities and their correlations with structures of Cu-Ag melts 2015 Chin. Phys. B 24 096601

[1] Nikolaev B and Vollmann J 1996 J. Non-Cryst. Solids 208 145
[2] Mi G B, Li P J, Ohapkin A V, Konstantinova A Y, Sabirzianova A A and Popel P S 2011 Acta Phys. Sin. 60 046601 (in Chinese)
[3] Ju Y Y, Zhang Q M, Gong Z Z and Ji G F 2013 Chin. Phys. B 22 083101
[4] Sato Y, Sugisawa K, Aoki D and Yamamura T 2005 Meas. Sci. Technol. 16 363
[5] Born M and Green H S 1947 Proc. R. Soc. London A 190 455
[6] Zwanzig R W, Kirkwood J G, Stripp K F and Oppenheim I 1953 J. Chem. Phys. 21 2050
[7] Rice S A and Allnatt A R 1961 J. Chem. Phys. 34 2144
[8] Waseda Y 1980 The Structure of Non-crystalline Materials (New York: McGraw-Gill Inc)
[9] Sun M H 2002 Viscosity Behavior of Al-based Glass Forming Liquid and Its Glass Forming Ability (Ph. D. dissertation) (Jinan: Shandong University) (in Chinese)
[10] Zhao Y, Bian X F, Qin X B, Qin J Y and Hou X X 2006 Phys. Lett. A 356 385
[11] Zhao Y, Hou X X and Bian X F 2008 Mater. Lett. 62 3542
[12] Zhao Y, Bian X F, Qin X B, Qin J Y and Hou X X 2007 J. Non-Cryst. Solids 353 1177
[13] Zhao Y, Bian X F and Hou X X 2006 Physica A 367 42
[14] Si P C, Bian X F, Zhang J Y, Li H, Sun M H and Zhao Y 2003 J. Phys.: Condens. Matter 15 5409
[15] Emadi D, Gruzleski J E and Toguri J M 1993 Metall. Trans. B 24 1055
[16] Krogh-Moe J 1956 Acta Crystallogr. 9 951
[17] Norman N 1957 Acta Crystallogr. 10 370
[18] Cromer D T and Mann J B 1967 J. Chem. Phys. 47 1892
[19] Enderby J E, Mitchell E W J and Powles J G 1980 Phil. Trans. R. Soc. London B 290 553
[20] Barnes A C, Hamilton M A, Buchanan P and Saboungi M L 1999 J. Non-Cryst. Solids 250-252 393
[21] Giessen B C and Wagner C N J 1972 Liquid Metals (New York: Marcel Dekker Ltd)
[22] Buhalenko V V, Ilinskii A G and Romanova A V 1991 Metallofiz. Nov. Tekh. 13 92
[23] Morioka S 2004 J. Non-Cryst. Solids 341 46
[24] Mi G B, Li P J, Ohapkin A V, Konstantinova A Y, Sabirzianova A A and Popel P S 2011 Acta Phys. Sin. 60 056601 (in Chinese)
[25] Sokolov A P, Kisliuk A, Soltwisch M and Quitmann D 1992 Phys. Rev. Lett. 69 1540
[26] Elena V and Evdokia S 1995 J. Non-Cryst. Solids. 192-193 145
[27] Zhao Y 2007 Structural Evolution and Cluster Behavior in the Solidification Process of Binary Alloy's Melts (Ph. D. dissertation) (Jinan: Shandong University) (in Chinese)
[1] Shedding vortex simulation method based on viscous compensation technology research
Hao Zhou(周昊), Lei Wang(汪雷), Zhang-Feng Huang(黄章峰), and Jing-Zhi Ren(任晶志). Chin. Phys. B, 2022, 31(4): 044702.
[2] A simplified approximate analytical model for Rayleigh-Taylor instability in elastic-plastic solid and viscous fluid with thicknesses
Xi Wang(王曦), Xiao-Mian Hu(胡晓棉), Sheng-Tao Wang(王升涛), and Hao Pan(潘昊). Chin. Phys. B, 2021, 30(4): 044702.
[3] Improved dielectric and electro-optical parameters of nematic liquid crystal doped with magnetic nanoparticles
Geeta Yadav, Govind Pathak, Kaushlendra Agrahari, Mahendra Kumar, Mohd Sajid Khan, V S Chandel, Rajiv Manohar. Chin. Phys. B, 2019, 28(3): 034209.
[4] Random phase screen influence of the inhomogeneous tissue layer on the generation of acoustic vortices
Zhiyao Ma(马致遥), Jun Ma(马骏), Dong Zhang(章东), Juan Tu(屠娟). Chin. Phys. B, 2018, 27(3): 034301.
[5] General equation describing viscosity of metallic melts under horizontal magnetic field
Yipeng Xu(许亦鹏), Xiaolin Zhao(赵晓林), Tingliang Yan(颜廷亮). Chin. Phys. B, 2017, 26(3): 036601.
[6] Abnormal breakdown of Stokes-Einstein relation in liquid aluminium
Chen-Hui Li (李晨辉), Xiu-Jun Han(韩秀君), Ying-Wei Luan(栾英伟), Jian-Guo Li(李建国). Chin. Phys. B, 2017, 26(1): 016102.
[7] Generalized model for laser-induced surface structure in metallic glass
Lin-Mao Ye(叶林茂), Zhen-Wei Wu(武振伟), Kai-Xin Liu(刘凯欣), Xiu-Zhang Tang(汤秀章), Xiang-Ming Xiong (熊向明). Chin. Phys. B, 2016, 25(6): 068104.
[8] Thermodynamic and transport properties of spiro-(1,1')-bipyrrolidinium tetrafluoroborate and acetonitrile mixtures: A molecular dynamics study
Qing-Yin Zhang(张庆印), Peng Xie(谢鹏), Xin Wang(王欣), Xue-Wen Yu(于学文), Zhi-Qiang Shi(时志强), Shi-Huai Zhao(赵世怀). Chin. Phys. B, 2016, 25(6): 066102.
[9] A new traffic model with a lane-changing viscosity term
Ko Hung-Tang (柯鸿堂), Liu Xiao-He (刘小禾), Guo Ming-Min (郭明旻), Wu Zheng (吴正). Chin. Phys. B, 2015, 24(9): 098901.
[10] Relationship between Voronoi entropy and the viscosity of Zr36Cu64 alloy melt based on molecular dynamics
Gao Wei (高伟), Feng Shi-Dong (冯士东), Zhang Shi-Liang (张世良), Qi Li (戚力), Liu Ri-Ping (刘日平). Chin. Phys. B, 2015, 24(12): 126102.
[11] Shear viscosity of aluminum studied by shock compression considering elasto-plastic effects
Ma Xiao-Juan (马小娟), Hao Bin-Bin (郝斌斌), Ma Hai-Xia (马海霞), Liu Fu-Sheng (刘福生). Chin. Phys. B, 2014, 23(9): 096204.
[12] Group solution for an unsteady non-Newtonian Hiemenz flow with variable fluid properties and suction/injection
H. M. El-Hawary, Mostafa A. A. Mahmoud, Reda G. Abdel-Rahman, Abeer S. Elfeshawey. Chin. Phys. B, 2014, 23(9): 090203.
[13] Monte Carlo study of the magnetic properties of spin liquid compound NiGa2S4
Zhang Kai-Cheng (张开成), Li Yong-Feng (李永峰), Liu Yong (刘永), Chi Feng (迟锋). Chin. Phys. B, 2014, 23(5): 057501.
[14] Molecular dynamics simulation of self-diffusion coefficients for liquid metals
Ju Yuan-Yuan (巨圆圆), Zhang Qing-Ming (张庆明), Gong Zi-Zheng (龚自正), Ji Guang-Fu (姬广富). Chin. Phys. B, 2013, 22(8): 083101.
[15] A fiber-array probe technique for measuring the viscosity of a substance under shock compression
Feng Li-Peng (冯立鹏), Liu Fu-Sheng (刘福生), Ma Xiao-Juan (马小娟), Zhao Bei-Jing (赵北京), Zhang Ning-Chao (张宁超), Wang Wen-Peng (王文鹏), Hao Bin-Bin (郝斌斌). Chin. Phys. B, 2013, 22(10): 108301.
No Suggested Reading articles found!