Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 014301    DOI: 10.1088/1674-1056/26/1/014301
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Simultaneous detection of the acoustic-field aberration and Doppler shift in forward acoustic scattering

Chuan-Lin He(何传林)1,2, Kun-De Yang(杨坤德)1,2, Yuan-Liang Ma(马远良)1,2, Bo Lei(雷波)1,2
1. Key Laboratory of Ocean Acoustics and Sensing(Northwestern Polytechnical University), Ministry of Industry and Information Technology, Xi'an 710072, China;
2. School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  

The aberration in the received acoustic field and the Doppler shift in the forward scattered field are simultaneously induced when a submerged target crosses the source-receiver line. Formulations for the two variations are developed upon an ideal forward scattering configuration. Both the field aberration and the Doppler shift are expressed as functions of the same argument–the target motion time. An experimental validation was carried out in a tank, in which the continuous wave was transmitted. The field aberration and the Doppler shift were extracted from the collected data by the simple Hilbert transform and a hybrid technique, respectively. The measured aberration and Doppler shift agree with the theoretical results. Simultaneous detection outputs are beneficial to enhance the reliability on target detection by providing both the aberrations in the received acoustic field and the Doppler shift in the forward scattered field.

Keywords:  forward scattering detection      Doppler shift detection  
Received:  09 May 2016      Revised:  01 August 2016      Accepted manuscript online: 
PACS:  43.30.+m (Underwater sound)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11174235 and 61571366).

Corresponding Authors:  Kun-De Yang     E-mail:  ykdzym@nwpu.edu.cn

Cite this article: 

Chuan-Lin He(何传林), Kun-De Yang(杨坤德), Yuan-Liang Ma(马远良), Bo Lei(雷波) Simultaneous detection of the acoustic-field aberration and Doppler shift in forward acoustic scattering 2017 Chin. Phys. B 26 014301

[1] Lei B, Yang K D and Ma Y L 2010 Chin. Phys. B 19 054301
[2] Lei B, Ma Y L and Yang K D 2011 Chin. Phys. Lett. 28 034302
[3] Urick R J 1983 Principles of Underwater Sound (2nd Edn.) (New York:McGraw-Hill) pp. 306-327
[4] Gillespie B, Rolt R, Edelson G, Shaffer R and Hursky P 1997 Acoust. Imag. 23 501
[5] Song H, Kuperman W A, Hodgkiss W S, Akal T and Guerrini P 2003 IEEE J. Ocean. Eng. 28 246
[6] Folegot T, Martinelli G, Guerrini P and Stevenson J M 2008 J. Acoust. Soc. Am. 124 2852
[7] Sabra K G, Conti S, Roux P, Akal T, Kuperman W A, Stevenson J M, Tesei A and Guerrini P 2010 J. Acoust. Soc. Am. 127 3430
[8] Lei B, Yang K D and Ma Y L 2014 J. Acoust. Soc. Am. 136 2998
[9] Lei B, Yang K D and Ma Y L 2012 J. Acoust. Soc. Am. 132 EL284
[10] He C L, Yang K D, Ma Y L and Lei B 2015 J. Acoust. Soc. Am. 138 EL293
[11] Ferguson B G and Quinn B G 1994 J. Acoust. Soc. Am. 96 821
[12] Quinn B G 1995 J. Acoust. Soc. Am. 98 2560
[13] Cherniakov M 2007 Bistatic Radar:Principles and Practice (New York:John Wiley & Sons Ltd) p. 411
[14] Gaunaurd G C and Werby M F 1987 J. Acoust. Soc. Am. 82 2021
[15] Oppenheim A V and Schafer R W 2009 Discrete-time Signal Processing (New Jersey:Prentice-Hall) pp. 533-538
[1] Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄). Chin. Phys. B, 2023, 32(1): 014301.
[2] Effects of mesoscale eddies on the spatial coherence of a middle range sound field in deep water
Fei Gao(高飞), Fang-Hua Xu(徐芳华), and Zheng-Lin Li(李整林). Chin. Phys. B, 2022, 31(11): 114302.
[3] Parallel optimization of underwater acoustic models: A survey
Zi-jie Zhu(祝子杰), Shu-qing Ma(马树青), Xiao-Qian Zhu(朱小谦), Qiang Lan(蓝强), Sheng-Chun Piao(朴胜春), and Yu-Sheng Cheng(程玉胜). Chin. Phys. B, 2022, 31(10): 104301.
[4] Improving sound diffusion in a reverberation tank using a randomly fluctuating surface
Qi Li(李琪), Dingding Xie(谢丁丁), Rui Tang(唐锐), Dajing Shang(尚大晶), and Zhichao Lv(吕志超). Chin. Phys. B, 2022, 31(6): 064302.
[5] Underwater acoustic metamaterial based on double Dirac cone characteristics in rectangular phononic crystals
Dong-Liang Pei(裴东亮), Tao Yang(杨洮), Meng Chen(陈猛), Heng Jiang(姜恒). Chin. Phys. B, 2019, 28(12): 124301.
[6] Influence of warm eddies on sound propagation in the Gulf of Mexico
Yao Xiao(肖瑶), Zhenglin Li(李整林), Jun Li(李鋆), Jiaqi Liu(刘佳琪), Karim G Sabra. Chin. Phys. B, 2019, 28(5): 054301.
[7] A novel multi-cavity Helmholtz muffler
Han-Bo Shao(邵瀚波), Huan He(何欢), Yan Chen(陈岩), Guo-Ping Chen(陈国平). Chin. Phys. B, 2019, 28(5): 054303.
[8] Theoretical prediction of the yield of strong oxides under acoustic cavitation
Jing Sun(孙晶), Zhuangzhi Shen(沈壮志), Runyang Mo(莫润阳). Chin. Phys. B, 2019, 28(1): 014301.
[9] Effects of rough surface on sound propagation in shallow water
Ruo-Yun Liu(刘若芸), Zheng-Lin Li(李整林). Chin. Phys. B, 2019, 28(1): 014302.
[10] Effect of the fluctuant acoustic channel on the gain of a linear array in the ocean waveguide
Lei Xie(谢磊), Chao Sun(孙超), Guang-Yu Jiang(蒋光禹), Xiong-Hou Liu(刘雄厚), De-Zhi Kong(孔德智). Chin. Phys. B, 2018, 27(11): 114301.
[11] Radiation from finite cylindrical shell with irregular-shaped acoustic enclosure
De-Sen Yang(杨德森), Rui Zhang(张睿), Sheng-Guo Shi(时胜国). Chin. Phys. B, 2018, 27(10): 104301.
[12] Three-dimensional parabolic equation model for seismo-acoustic propagation:Theoretical development and preliminary numerical implementation
Jun Tang(唐骏), Sheng-Chun Piao(朴胜春), Hai-Gang Zhang(张海刚). Chin. Phys. B, 2017, 26(11): 114301.
[13] Developments of parabolic equation method in the period of 2000-2016
Chuan-Xiu Xu(徐传秀), Jun Tang(唐骏), Sheng-Chun Piao(朴胜春), Jia-Qi Liu(刘佳琪), Shi-Zhao Zhang(张士钊). Chin. Phys. B, 2016, 25(12): 124315.
[14] Underwater asymmetric acoustic transmission structure using the medium with gradient change of impedance
Bo Hu(胡博), Jie Shi(时洁), Sheng-Guo Shi(时胜国), Yu Sun(孙玉), Zhong-Rui Zhu(朱中锐). Chin. Phys. B, 2016, 25(2): 024305.
[15] Effects of core position of locally resonant scatterers on low-frequency acoustic absorption in viscoelastic panel
Zhong Jie (钟杰), Wen Ji-Hong (温激鸿), Zhao Hong-Gang (赵宏刚), Yin Jian-Fei (尹剑飞), Yang Hai-Bin (杨海滨). Chin. Phys. B, 2015, 24(8): 084301.
No Suggested Reading articles found!