|
|
Measurement-device-independent quantum cryptographic conferencing with an untrusted source |
Rui-Ke Chen(陈瑞柯)1,2, Wan-Su Bao(鲍皖苏)1,2, Yang Wang(汪洋)1,2, Hai-Ze Bao(包海泽)1,2, Chun Zhou(周淳)1,2, Mu-Sheng Jiang(江木生)1,2, Hong-Wei Li(李宏伟)1,2 |
1. Zhengzhou Information Science and Technology Institute, Zhengzhou 450001, China; 2. Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract Measurement-device-independent quantum cryptographic conferencing (MDI-QCC) protocol puts MDI quantum key distribution (MDI-QKD) forwards to multi-party applications, and suggests a significant framework for practical multi-party quantum communication. In order to mitigate the experimental complexity of MDI-QCC and remove the key assumption (the sources are trusted) in MDI-QCC, we extend the framework of MDI-QKD with an untrusted source to MDI-QCC and give the rigorous security analysis of MDI-QCC with an untrusted source. What is more, in the security analysis we clearly provide a rigorous analytical method for parameters' estimation, which with simple modifications can be applied to not only MDI-QKD with an untrusted source but also arbitrary multi-party communication protocol with an untrusted source. The simulation results show that at reasonable distances the asymptotic key rates for the two cases (with trusted and untrusted sources) almost overlap, which indicates the feasibility of our protocol.
|
Received: 11 July 2016
Revised: 20 September 2016
Accepted manuscript online:
|
PACS:
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB338002) and the National Natural Science Foundation of China (Grant Nos. 11304397 and 61505261). |
Corresponding Authors:
Wan-Su Bao
E-mail: 2010thzz@sina.com
|
Cite this article:
Rui-Ke Chen(陈瑞柯), Wan-Su Bao(鲍皖苏), Yang Wang(汪洋), Hai-Ze Bao(包海泽), Chun Zhou(周淳), Mu-Sheng Jiang(江木生), Hong-Wei Li(李宏伟) Measurement-device-independent quantum cryptographic conferencing with an untrusted source 2017 Chin. Phys. B 26 010302
|
[1] |
Bennett C H and Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175-179
|
[2] |
Lo H K and Chau H F 1999 Science 283 2050
|
[3] |
Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
|
[4] |
Mayers D 2001 J. ACM 48 351
|
[5] |
Acín A, Brunner N, Gisin N, Massar S, Pironio S and Scarani V 2007 Phys. Rev. Lett. 98 230501
|
[6] |
Masanes L, Pironio S and Acín A 2011 Nat. Commun. 2 238
|
[7] |
Pironio S, Masanes Ll, Leverrier A and Acín A 2013 Phys. Rev. X 3 031007
|
[8] |
Pawlowski M and Brunner N 2011 Phys. Rev. A 84 010302
|
[9] |
Wang Y, Bao W S, Li H W, Zhou C and Li Y 2014 Chin. Phys. B 23 080303
|
[10] |
Qi B, Fung C H F, Lo H K and Ma X 2007 Quantum Inf. Comput. 7 73
|
[11] |
Zhao Y, Fung C H F, Qi B, Chen C and Lo H K 2008 Phys. Rev. A 78 042333
|
[12] |
Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J and Makarov V 2010 Nat. Photonics 4 686
|
[13] |
Gerhardt I, Liu Q, Lamas-Linares A, Skaar J, Kurtsiefer C and Makarov V 2011 Nat. Commun. 2 349
|
[14] |
Jain N, Wittmann C, Lydersen L, Wiechers C, Elser D, Marquardt C, Makarov V and Leuchs G 2011 Phys. Rev. Lett. 107 110501
|
[15] |
Jiang M S, Sun S H, Tang G Z, Ma X C, Li C Y and Liang L M 2013 Phys. Rev. A 88 062335
|
[16] |
Tanner M G, Makarov V and Hadfield R H 2014 Opt. Express 22 6734
|
[17] |
Bugge A N, Sauge S, Ghazali A M M, Skaar J, Lydersen L and Makarov V 2014 Phys. Rev. Lett. 112 070503
|
[18] |
Braunstein S L and Pirandola S 2012 Phys. Rev. Lett. 108 130502
|
[19] |
Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
|
[20] |
Tamaki K, Lo H K, Fung C H F and Qi B 2012 Phys. Rev. A 85 042307
|
[21] |
Ma X and Razavi M 2012 Phy. Rev. A 86 062319
|
[22] |
Wang X B 2013 Phys. Rev. A 87 012320
|
[23] |
Xu F, Curty M, Qi B and Lo H K 2013 New J. Phys. 15 113007
|
[24] |
Zhou C, Bao W S, Chen W, Li H W, Yin Z Q, Wang Y and Han Z F 2013 Phys. Rev. A 88 052333
|
[25] |
Wang Q and Wang X B 2013 Phys. Rev. A 88 052332
|
[26] |
Curty M, Xu F, Cui W, Lim C C W, Tamaki K and Lo H K 2014 Nat. Commun. 5 3732
|
[27] |
Yin Z Q, Fung C H F, Ma X, Zhang C M, Li H W, Chen W, Wang S, Guo G C and Han Z F 2014 Phys. Rev. A 90 052319
|
[28] |
Zhou C, Bao W S, Zhang H L, Li H W, Wang Y, Li Y and Wang X 2015 Phys. Rev. A 91 022313
|
[29] |
Xu F 2015 Phys. Rev. A 92 012333
|
[30] |
Dong C, Sun Y and Zhao S H 2015 Acta Phys. Sin. 64 140304(in Chinese)
|
[31] |
Wang L, Zhao S M, Gong L Y and Cheng W W 2015 Chin. Phys. B 24 120307
|
[32] |
Rubenok A, Slater J A, Chan P, Lucio-Martinez I and Tittel W 2013 Phys. Rev. Lett. 111 130501
|
[33] |
Liu Y, Chen T Y, Wang L J, Liang H, Shentu G L, Wang J, Cui K, Yin H L, Liu N L, Li L, Ma X, Pelc J S, Fejer M M, Peng C Z, Zhang Q and Pan J W 2013 Phys. Rev. Lett. 111 130502
|
[34] |
Tang Z, Liao Z, Xu F, Qi B, Qian L and Lo H K 2014 Phys. Rev. Lett. 112 190503
|
[35] |
Tang Y L, Yin H L, Chen S J, Liu Y, Zhang W J, Jiang X, Zhang L, Wang J, You L X, Guan J Y, Yang D X, Wang Z, Liang H, Zhang Z, Zhou N, Ma X, Chen T Y, Zhang Q and Pan J W 2014 Phys. Rev. Lett. 113 190501
|
[36] |
Pirandola S, Ottaviani C, Spedalieri G, Weedbrook C, Braunstein S L, Lloyd S, Gehring T, Jacobsen C S and Andersen U L 2015 Nat. Photonics 9 397
|
[37] |
Tang Y L, Yin H L, Zhao Q, Liu H, Sun X X, Huang M Q, Zhang W J, Chen S J, Zhang L, You L X, Wang Z, Liu Y, Lu C Y, Jiang X, Ma X, Zhang Q, Chen T Y and Pan J W 2016 Phys. Rev. X 6 011024
|
[38] |
Comandar L C, Lucamarini M, Fröhlich B, Dynes J F, Sharpe A W, Tam S W B, Yuan Z L, Penty R V and Shields A J 2016 Nat. Photonics 10 312
|
[39] |
Wang C, Song X T, Yin Z Q, Wang S, Chen W, Zhang C M, Guo G C and Han Z F 2015 Phys. Rev. Lett. 115 160502
|
[40] |
Yin H L, Chen T Y, Yu Z W, Liu H, You L X, Zhou Y H, Chen S J, Mao Y, Huang M Q, Zhang W J, Chen H, Li M J, Nolan D, Zhou F, Jiang X, Wang Z, Zhang Q, Wang X B and Pan J W 2016 Phys. Rev. Lett. 117 190501
|
[41] |
Bose S, Vedral V and Knight P L 1998 Phys. Rev. A 57 822
|
[42] |
Chen K and Lo H K 2007 Quantum Inf. Comput. 7 689
|
[43] |
Fu Y, Yin H L, Chen T Y and Chen Z B 2015 Phys. Rev. Lett. 114 090501
|
[44] |
Zhu C, Xu F and Pei C 2015 Sci. Rep. 5 17449
|
[45] |
Chen R K, Bao W S, Wang Y, Bao H Z, Zhou C and Li H W 2016 Opt. Express 24 6594
|
[46] |
Zhao Y, Qi B and Lo H K 2008 Phys. Rev. A 77 052327
|
[47] |
Zhao Y, Qi B, Lo H K and Qian L 2010 New J. Phys. 12 023024
|
[48] |
Sajeed S, Radchenko I, Kaiser S, Bourgoin J P, Pappa A, Monat L, Legré M and Makarov V 2015 Phys. Rev. A 91 032326
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|