Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 010302    DOI: 10.1088/1674-1056/26/1/010302
GENERAL Prev   Next  

Measurement-device-independent quantum cryptographic conferencing with an untrusted source

Rui-Ke Chen(陈瑞柯)1,2, Wan-Su Bao(鲍皖苏)1,2, Yang Wang(汪洋)1,2, Hai-Ze Bao(包海泽)1,2, Chun Zhou(周淳)1,2, Mu-Sheng Jiang(江木生)1,2, Hong-Wei Li(李宏伟)1,2
1. Zhengzhou Information Science and Technology Institute, Zhengzhou 450001, China;
2. Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  Measurement-device-independent quantum cryptographic conferencing (MDI-QCC) protocol puts MDI quantum key distribution (MDI-QKD) forwards to multi-party applications, and suggests a significant framework for practical multi-party quantum communication. In order to mitigate the experimental complexity of MDI-QCC and remove the key assumption (the sources are trusted) in MDI-QCC, we extend the framework of MDI-QKD with an untrusted source to MDI-QCC and give the rigorous security analysis of MDI-QCC with an untrusted source. What is more, in the security analysis we clearly provide a rigorous analytical method for parameters' estimation, which with simple modifications can be applied to not only MDI-QKD with an untrusted source but also arbitrary multi-party communication protocol with an untrusted source. The simulation results show that at reasonable distances the asymptotic key rates for the two cases (with trusted and untrusted sources) almost overlap, which indicates the feasibility of our protocol.
Keywords:  quantum cryptographic conferencing      measurement-device-independent      quantum key distribution      untrusted source  
Received:  11 July 2016      Revised:  20 September 2016      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB338002) and the National Natural Science Foundation of China (Grant Nos. 11304397 and 61505261).
Corresponding Authors:  Wan-Su Bao     E-mail:  2010thzz@sina.com

Cite this article: 

Rui-Ke Chen(陈瑞柯), Wan-Su Bao(鲍皖苏), Yang Wang(汪洋), Hai-Ze Bao(包海泽), Chun Zhou(周淳), Mu-Sheng Jiang(江木生), Hong-Wei Li(李宏伟) Measurement-device-independent quantum cryptographic conferencing with an untrusted source 2017 Chin. Phys. B 26 010302

[1] Bennett C H and Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175-179
[2] Lo H K and Chau H F 1999 Science 283 2050
[3] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[4] Mayers D 2001 J. ACM 48 351
[5] Acín A, Brunner N, Gisin N, Massar S, Pironio S and Scarani V 2007 Phys. Rev. Lett. 98 230501
[6] Masanes L, Pironio S and Acín A 2011 Nat. Commun. 2 238
[7] Pironio S, Masanes Ll, Leverrier A and Acín A 2013 Phys. Rev. X 3 031007
[8] Pawlowski M and Brunner N 2011 Phys. Rev. A 84 010302
[9] Wang Y, Bao W S, Li H W, Zhou C and Li Y 2014 Chin. Phys. B 23 080303
[10] Qi B, Fung C H F, Lo H K and Ma X 2007 Quantum Inf. Comput. 7 73
[11] Zhao Y, Fung C H F, Qi B, Chen C and Lo H K 2008 Phys. Rev. A 78 042333
[12] Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J and Makarov V 2010 Nat. Photonics 4 686
[13] Gerhardt I, Liu Q, Lamas-Linares A, Skaar J, Kurtsiefer C and Makarov V 2011 Nat. Commun. 2 349
[14] Jain N, Wittmann C, Lydersen L, Wiechers C, Elser D, Marquardt C, Makarov V and Leuchs G 2011 Phys. Rev. Lett. 107 110501
[15] Jiang M S, Sun S H, Tang G Z, Ma X C, Li C Y and Liang L M 2013 Phys. Rev. A 88 062335
[16] Tanner M G, Makarov V and Hadfield R H 2014 Opt. Express 22 6734
[17] Bugge A N, Sauge S, Ghazali A M M, Skaar J, Lydersen L and Makarov V 2014 Phys. Rev. Lett. 112 070503
[18] Braunstein S L and Pirandola S 2012 Phys. Rev. Lett. 108 130502
[19] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[20] Tamaki K, Lo H K, Fung C H F and Qi B 2012 Phys. Rev. A 85 042307
[21] Ma X and Razavi M 2012 Phy. Rev. A 86 062319
[22] Wang X B 2013 Phys. Rev. A 87 012320
[23] Xu F, Curty M, Qi B and Lo H K 2013 New J. Phys. 15 113007
[24] Zhou C, Bao W S, Chen W, Li H W, Yin Z Q, Wang Y and Han Z F 2013 Phys. Rev. A 88 052333
[25] Wang Q and Wang X B 2013 Phys. Rev. A 88 052332
[26] Curty M, Xu F, Cui W, Lim C C W, Tamaki K and Lo H K 2014 Nat. Commun. 5 3732
[27] Yin Z Q, Fung C H F, Ma X, Zhang C M, Li H W, Chen W, Wang S, Guo G C and Han Z F 2014 Phys. Rev. A 90 052319
[28] Zhou C, Bao W S, Zhang H L, Li H W, Wang Y, Li Y and Wang X 2015 Phys. Rev. A 91 022313
[29] Xu F 2015 Phys. Rev. A 92 012333
[30] Dong C, Sun Y and Zhao S H 2015 Acta Phys. Sin. 64 140304(in Chinese)
[31] Wang L, Zhao S M, Gong L Y and Cheng W W 2015 Chin. Phys. B 24 120307
[32] Rubenok A, Slater J A, Chan P, Lucio-Martinez I and Tittel W 2013 Phys. Rev. Lett. 111 130501
[33] Liu Y, Chen T Y, Wang L J, Liang H, Shentu G L, Wang J, Cui K, Yin H L, Liu N L, Li L, Ma X, Pelc J S, Fejer M M, Peng C Z, Zhang Q and Pan J W 2013 Phys. Rev. Lett. 111 130502
[34] Tang Z, Liao Z, Xu F, Qi B, Qian L and Lo H K 2014 Phys. Rev. Lett. 112 190503
[35] Tang Y L, Yin H L, Chen S J, Liu Y, Zhang W J, Jiang X, Zhang L, Wang J, You L X, Guan J Y, Yang D X, Wang Z, Liang H, Zhang Z, Zhou N, Ma X, Chen T Y, Zhang Q and Pan J W 2014 Phys. Rev. Lett. 113 190501
[36] Pirandola S, Ottaviani C, Spedalieri G, Weedbrook C, Braunstein S L, Lloyd S, Gehring T, Jacobsen C S and Andersen U L 2015 Nat. Photonics 9 397
[37] Tang Y L, Yin H L, Zhao Q, Liu H, Sun X X, Huang M Q, Zhang W J, Chen S J, Zhang L, You L X, Wang Z, Liu Y, Lu C Y, Jiang X, Ma X, Zhang Q, Chen T Y and Pan J W 2016 Phys. Rev. X 6 011024
[38] Comandar L C, Lucamarini M, Fröhlich B, Dynes J F, Sharpe A W, Tam S W B, Yuan Z L, Penty R V and Shields A J 2016 Nat. Photonics 10 312
[39] Wang C, Song X T, Yin Z Q, Wang S, Chen W, Zhang C M, Guo G C and Han Z F 2015 Phys. Rev. Lett. 115 160502
[40] Yin H L, Chen T Y, Yu Z W, Liu H, You L X, Zhou Y H, Chen S J, Mao Y, Huang M Q, Zhang W J, Chen H, Li M J, Nolan D, Zhou F, Jiang X, Wang Z, Zhang Q, Wang X B and Pan J W 2016 Phys. Rev. Lett. 117 190501
[41] Bose S, Vedral V and Knight P L 1998 Phys. Rev. A 57 822
[42] Chen K and Lo H K 2007 Quantum Inf. Comput. 7 689
[43] Fu Y, Yin H L, Chen T Y and Chen Z B 2015 Phys. Rev. Lett. 114 090501
[44] Zhu C, Xu F and Pei C 2015 Sci. Rep. 5 17449
[45] Chen R K, Bao W S, Wang Y, Bao H Z, Zhou C and Li H W 2016 Opt. Express 24 6594
[46] Zhao Y, Qi B and Lo H K 2008 Phys. Rev. A 77 052327
[47] Zhao Y, Qi B, Lo H K and Qian L 2010 New J. Phys. 12 023024
[48] Sajeed S, Radchenko I, Kaiser S, Bourgoin J P, Pappa A, Monat L, Legré M and Makarov V 2015 Phys. Rev. A 91 032326
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[6] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[7] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[8] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[9] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[10] Measurement-device-independent one-step quantum secure direct communication
Jia-Wei Ying(应佳伟), Lan Zhou(周澜), Wei Zhong(钟伟), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2022, 31(12): 120303.
[11] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[12] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[13] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[14] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[15] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
No Suggested Reading articles found!