Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 094701    DOI: 10.1088/1674-1056/25/9/094701
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Characteristics and generation of elastic turbulence in a three-dimensional parallel plate channel using direct numerical simulation

Hong-Na Zhang(张红娜)1, Feng-Chen Li(李凤臣)1, Xiao-Bin Li(李小斌)1, Dong-Yang Li(李东阳)1, Wei-Hua Cai(蔡伟华)1, Bo Yu(宇波)2
1. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China;
2. Beijing Institute of Petrochemical Technology, Beijing 102617, China
Abstract  

Direct numerical simulations (DNSs) of purely elastic turbulence in rectilinear shear flows in a three-dimensional (3D) parallel plate channel were carried out, by which numerical databases were established. Based on the numerical databases, the present paper analyzed the structural and statistical characteristics of the elastic turbulence including flow patterns, the wall effect on the turbulent kinetic energy spectrum, and the local relationship between the flow motion and the microstructures' behavior. Moreover, to address the underlying physical mechanism of elastic turbulence, its generation was presented in terms of the global energy budget. The results showed that the flow structures in elastic turbulence were 3D with spatial scales on the order of the geometrical characteristic length, and vortex tubes were more likely to be embedded in the regions where the polymers were strongly stretched. In addition, the patterns of microstructures' elongation behave like a filament. From the results of the turbulent kinetic energy budget, it was found that the continuous energy releasing from the polymers into the main flow was the main source of the generation and maintenance of the elastic turbulent status.

Keywords:  elastic turbulence      viscoelastic fluid      direct numerical simulation      rectilinear shear flow  
Received:  18 March 2016      Revised:  19 April 2016      Accepted manuscript online: 
PACS:  47.20.Gv (Viscous and viscoelastic instabilities)  
  47.27.ek (Direct numerical simulations)  
  47.27.Cn (Transition to turbulence)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51276046 and 51506037), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51421063), the China Postdoctoral Science Foundation (Grant No. 2016M591526), the Heilongjiang Postdoctoral Fund, China (Grant No. LBH-Z15063), and the China Postdoctoral International Exchange Program.

Corresponding Authors:  Xiao-Bin Li, Wei-Hua Cai     E-mail:  lixb@hit.edu.cn;caiwh@hit.edu.cn

Cite this article: 

Hong-Na Zhang(张红娜), Feng-Chen Li(李凤臣), Xiao-Bin Li(李小斌), Dong-Yang Li(李东阳), Wei-Hua Cai(蔡伟华), Bo Yu(宇波) Characteristics and generation of elastic turbulence in a three-dimensional parallel plate channel using direct numerical simulation 2016 Chin. Phys. B 25 094701

[1] Bird R B, Curtiss C F, Armstrong R C and Hassager O 1987 Dynamics of Polymers Liquids (New York: Wiley)
[2] Toms B A 1949 Proc. 1st Int. Congr. Rheol. (North Holland)
[3] Sreenivasan K R and White C M 2000 J. Fluid Mech. 409 149
[4] Shao X M, Lin J Z, Wu T and Wu Y L 2002 Canadian J. Chem. Eng. 80 293
[5] Li F C, Kawaguchi Y, Segawa T and Hishida K 2004 Phys. Fluids 16 3281
[6] Li F C, Kawaguchi Y, Segawa T and Hishida K 2005 Phys. Fluids 17 075104
[7] Cai W H, Li F C and Zhang H N 2010 J. Fluid Mech. 665 334
[8] Shaqfeh E S G 1996 Annu. Rev. Fluid Mech. 28 129
[9] Groisman A and Steinberg V 2000 Nature 405 53
[10] Li F C, Kinoshita H, Li X B, Oishi M, Fujii T and Oshima M 2010 Exp. Thermal Fluid Sci. 34 20
[11] Groisman A and Steinberg V 2001 Nature 410 905
[12] Burghelea T, Segre E and Steinberg V 2004 Phys. Rev. Lett. 92 164501
[13] Burghelea T, Segre E, Bar-Joseph I, Groisman A and Steinberg V 2004 Phys. Rev. E 69 066305
[14] Whalley R D, Abed W M, Dennis D J C and Poole R J 2015 Theor. Appl. Mech. Lett. 5 103
[15] Whalley R D, Abed W M, Dennis D J C and Poole R J 2015 Theor. Appl. Mech. Lett. 5 103
[16] Groisman A, Enzelberger M and Quake S R 2003 Science 300 955
[17] Groisman A and Quake S R 2004 Phys. Rev. Lett. 92 094501
[18] Groisman A and Steinberg V 2004 New J. Phys. 6 29
[19] Burghelea T, Segre E and Steinberg V 2007 Phys. Fluids 19 053104
[20] Pakdel P and McKinley G H 1996 Phys. Rev. Lett. 77 2459
[21] McKinley G H, Pakdel P and Oztekin A 1996 J. Non-Newtonian Fluid Mech. 67 19
[22] Morozov A and van Saarloos W 2005 Phys. Rev. Lett. 95 024501
[23] Hoda N, Jovanović M R and Kumar S 2008 J. Fluid Mech. 601 407
[24] Jovanović M R and Kumar S 2010 Phys. Fluids 22 023101
[25] Bonn D, Ingremeau F, Amarouchene Y and Kellay H 2011 Phys. Rev. E 84 045301
[26] Pan L, Morozov A, Wagner C and Arratia P E 2013 Phys. Rev. Lett. 110 174502
[27] Perkins T T, Smith D E and Chu S 1997 Science 276 2016
[28] Smith D E, Babcock H P and Chu S 1999 Science 283 1724
[29] Gerashchenko S, Chevallard C and Steinberg V 2005 Europhys. Lett. 71 221
[30] Gerashchenko S and Steinberg V 2006 Phys. Rev. Lett. 96 038304
[31] Groisman A and Steinberg V 2001 Phys. Rev. Lett. 86 934
[32] Burghelea T, Segre E and Steinberg V 2006 Phys. Rev. Lett. 96 214502
[33] Jun Y and Steinberg V 2009 Phys. Rev. Lett. 102 124503
[34] Jun Y and Steinberg V 2010 Europhys. Lett. 90 44002
[35] Thomas D G, Sureshkumar R and Khomami B 2006 Phys. Rev. Lett. 97 054501
[36] Liu N and Khomami B 2013 J. Fluid Mech. 737 R4
[37] Berti S, Bistagnino A, Boffetta G, Celani A and Musacchio S 2008 Phys. Rev. E 77 055306
[38] Berti S and Bistagnino A 2010 Phys. Rev. E 82 036314
[39] Zhang H N, Li F C, Cai W H, Yang J C and Li X B 2011 J. Eng. Thermo. 32 973
[40] Thomases B and Shelley M J 2009 Phys. Rev. Lett. 103 094501
[41] Li F C, Zhang H N, Cao Y, Kunugi T, Kinoshita H and Oshima M 2012 Chin. Phys. Lett. 29 94704
[42] Zhang H N, Li F C, Cao Y, Tomoaki K and Yu B 2013 Chin. Phys. B 22 24703
[43] Yu B and Kawaguchi Y 2004 J. Non-Newtonian Fluid Mech. 116 431
[44] Horiuti K and Takagi Y 2001 Phys. Fluids 13 3756
[45] Pope S B 2000 Turbulent Flows (Cambridge: Cambridge University Press)
[1] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[2] Direct numerical simulation on relevance of fluctuating velocities and drag reduction in turbulent channel flow with spanwise space-dependent electromagnetic force
Dai-Wen Jiang(江代文), Hui Zhang(张辉), Bao-Chun Fan(范宝春), An-Hua Wang(王安华). Chin. Phys. B, 2019, 28(5): 054701.
[3] A new kind of hairpin-like vortical structure induced by cross-interaction of sinuous streaks in turbulent channel
Jian Li(李健), Gang Dong(董刚), Hui Zhang(张辉), Zhengshou Chen(陈正寿), Zhaode Zhang(张兆德). Chin. Phys. B, 2018, 27(8): 084701.
[4] Mechanism of controlling turbulent channel flow with the effect of spanwise Lorentz force distribution
Yang Han(韩洋), Hui Zhang(张辉), Bao-Chun Fan(范宝春), Jian Li(李健), Dai-Wen Jiang(江代文), Zi-Jie Zhao(赵子杰). Chin. Phys. B, 2017, 26(8): 084704.
[5] Direct numerical simulation of viscoelastic-fluid-based nanofluid turbulent channel flow with heat transfer
Yang Juan-Cheng (阳倦成), Li Feng-Chen (李凤臣), Cai Wei-Hua (蔡伟华), Zhang Hong-Na (张红娜), Yu Bo (宇波). Chin. Phys. B, 2015, 24(8): 084401.
[6] A new mixed subgrid-scale model for large eddy simulation of turbulent drag-reducing flows of viscoelastic fluids
Li Feng-Chen (李凤臣), Wang Lu (王璐), Cai Wei-Hua (蔡伟华). Chin. Phys. B, 2015, 24(7): 074701.
[7] Newtonian heating effects in three-dimensional flow of viscoelastic fluid
A. Qayyum, T. Hayat, M. S. Alhuthali, H. M. Malaikah. Chin. Phys. B, 2014, 23(5): 054703.
[8] Direct numerical simulation of elastic turbulence and its mixing-enhancement effect in a straight channel flow
Zhang Hong-Na (张红娜), Li Feng-Chen (李凤臣), Cao Yang (曹阳), Kunugi Tomoaki, Yu Bo (宇波). Chin. Phys. B, 2013, 22(2): 024703.
[9] Direct numerical simulation study of the interaction between the polymer effect and velocity gradient tensor in decaying homogeneous isotropic turbulence
Cai Wei-Hua(蔡伟华),Li Feng-Chen(李凤臣), and Zhang Hong-Na(张红娜) . Chin. Phys. B, 2011, 20(12): 124702.
[10] Lattice Boltzmann simulation of transverse wave travelling in Maxwell viscoelastic fluid
Li Hua-Bing (李华兵), Fang Hai-Ping (方海平). Chin. Phys. B, 2004, 13(12): 2087-2090.
No Suggested Reading articles found!