Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 054703    DOI: 10.1088/1674-1056/23/5/054703
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Newtonian heating effects in three-dimensional flow of viscoelastic fluid

A. Qayyuma, T. Hayata b, M. S. Alhuthalib, H. M. Malaikahb
a Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000, Pakistan;
b Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Abstract  A mathematical model is constructed to investigate the three-dimensional flow of a non-Newtonian fluid. An incompressible viscoelastic fluid is used in mathematical formulation. The conjugate convective process (in which heat the transfer rate from the bounding surface with a finite capacity is proportional to the local surface temperature) in three-dimensional flow of a differential type of non-Newtonian fluid is analyzed for the first time. Series solutions for the nonlinear differential system are computed. Plots are presented for the description of emerging parameters entering into the problem. It is observed that the conjugate heating phenomenon causes an appreciable increase in the temperature at the stretching wall.
Keywords:  viscoelastic fluid      three-dimensional flow      Newtonian heating  
Received:  17 July 2013      Revised:  22 October 2013      Accepted manuscript online: 
PACS:  47.50.Gj (Instabilities)  
  44.20.+b (Boundary layer heat flow)  
Fund: Project supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah (Grant No. 10-130/1434HiCi).
Corresponding Authors:  A. Qayyum     E-mail:  abq_bw76@yahoo.com
About author:  47.50.Gj; 44.20.+b

Cite this article: 

A. Qayyum, T. Hayat, M. S. Alhuthali, H. M. Malaikah Newtonian heating effects in three-dimensional flow of viscoelastic fluid 2014 Chin. Phys. B 23 054703

[1] Jamil M, Rauf A, Fetecau C and Khan N A 2011 Comm. Nonlinear Sci. Numer. Simul. 16 1959
[2] Fetecau C, Mahmood A and Jamil M 2010 J. Non-Newtonian Fluid Mech. 165 350
[3] Hayat T, Alsaedi A and Bhattacharyya K 2013 Chin. Phys. B 22 024702
[4] Kang J, Fu C and Tan W 2011 J. Non-Newtonian Fluid Mech. 166 93
[5] Salem A M and Fathy R 2012 Chin. Phys. B 21 054701
[6] Haitao Q and Mingyu X 2007 Mech. Research Comm. 34 210
[7] Hayat T, Awais M and Sajid M 2011 Int. J. Mod. Phys. B 25 2863
[8] Hayat T, Awais M and Obaidat S 2012 Comm. Nonlinear Sci. Numer. Simul. 17 699
[9] Bhattacharyya K, Mukhopadhyay S and Layek G C 2011 Chin. Phys. Lett. 28 094702
[10] Hayat T, Safdar A, Awais M and Mesloub S 2012 Int. J. Heat Mass Trans. 55 2129
[11] Bhattacharyya K, Hayat T and Alsaedi A 2013 Chin. Phys. B 22 024702
[12] Eerdunbuhe and Temuerchaolu 2012 Chin. Phys. B 21 035201
[13] Wang S and Tan W 2011 Int. J. Heat Fluid Flow 32 88
[14] Mukhopadhyay S 2010 Chin. Phys. Lett. 27 124401
[15] Hayat T, Naz R, Asghar S and Mesloub S 2012 Nuclear Engin. Design 243 1
[16] Li B, Xu Z W, Zhao Z G 2009 Acta Phys. Sin. 58 5750 (in Chinese)
[17] Crane L J 1970 Z. Angew. Math. Phys. 21 645
[18] Mukhopadhyay S 2009 Int. J. Heat Mass Trans. 52 3261
[19] Ishak A, Nazar R and Pop I 2007 Chin. Phys. Lett. 24 2274
[20] Bhattacharyya K 2013 Chin. Phys. B 22 074705
[21] Hayat T, Awais M, Asghar S and Hendi A A 2011 ASME J. Fluid Eng. 133 061201
[22] Ariel P D 2007 Comp. Math. App. 54 920
[23] Singh A K 2005 Int. Comm. Heat Mass Trans. 32 1420
[24] Hayat T, Awais M and Obaidat S 2012 ASME J. Heat Transfer 134 044503
[25] Merkin J H 1994 a J. Appl. Math. Phys. 45 258
[26] Liao S J 2003 Beyond Perturbation Introduction to Homotopy Analysis Method. (Boca Raton: Chapman & Hall/CRC Press)
[27] Rashidi M M, Mohimanian pour S A and Abbasbandy S 2011 Comm. Nonlinear Sci. Numer. Simulat. 16 1874
[28] Keimanesh M, Rashidi M M, Chamkha A J and Jafari R 2011 Computers Mathematics Appl. 62 2871
[29] Qayyum A, Awais M, Alsaedi A and Hayat T 2012 Chin. Phys. Lett. 29 034701
[30] Hayat T and Awais M 2011 Int. J. Numer. Methods Fluids 66 875
[31] Turkyilmazoglu M 2013 Appl. Math. Modelling 37 7539
[32] Sweilam N H and Khader M M 2011 World Applied Sci. J. 3 1
[33] Khader M M 2013 J. Nanotech. Adv. Mater. 1 59
[34] Khadera M M, Kumar S and Abbasbandy S 2013 Chin. Phys. B 22 110201
[35] Abbasbandy S 2007 Phys. Lett. A 361 478
[1] Characteristics and generation of elastic turbulence in a three-dimensional parallel plate channel using direct numerical simulation
Hong-Na Zhang(张红娜), Feng-Chen Li(李凤臣), Xiao-Bin Li(李小斌), Dong-Yang Li(李东阳), Wei-Hua Cai(蔡伟华), Bo Yu(宇波). Chin. Phys. B, 2016, 25(9): 094701.
[2] Three-dimensional flow of Powell-Eyring nanofluid with heat and mass flux boundary conditions
Tasawar Hayat, Ikram Ullah, Taseer Muhammad, Ahmed Alsaedi, Sabir Ali Shehzad. Chin. Phys. B, 2016, 25(7): 074701.
[3] A new mixed subgrid-scale model for large eddy simulation of turbulent drag-reducing flows of viscoelastic fluids
Li Feng-Chen (李凤臣), Wang Lu (王璐), Cai Wei-Hua (蔡伟华). Chin. Phys. B, 2015, 24(7): 074701.
[4] Direct numerical simulation of elastic turbulence and its mixing-enhancement effect in a straight channel flow
Zhang Hong-Na (张红娜), Li Feng-Chen (李凤臣), Cao Yang (曹阳), Kunugi Tomoaki, Yu Bo (宇波). Chin. Phys. B, 2013, 22(2): 024703.
[5] Lattice Boltzmann simulation of transverse wave travelling in Maxwell viscoelastic fluid
Li Hua-Bing (李华兵), Fang Hai-Ping (方海平). Chin. Phys. B, 2004, 13(12): 2087-2090.
No Suggested Reading articles found!