Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 115201    DOI: 10.1088/1674-1056/ac01c2
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Simulations on the multi-shell target ignition driven by radiation pulse in Z-pinch dynamic hohlraum

Shi-Jia Chen(陈诗佳)1, Yan-Yun Ma(马燕云)2,3,†, Fu-Yuan Wu(吴福源)2,4,‡, Xiao-Hu Yang(杨晓虎)1,2, Yun Yuan(袁赟)1, Ye Cui(崔野)1, and Rafael Ramis5
1 Department of Physics, National University of Defense Technology, Changsha 410073, China;
2 IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China;
3 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China;
4 Laboratory of Laser Plasmas School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;
5 E. T. S. I. Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Spain
Abstract  We present the first simulation results of a multi-shell target ignition driven by Z-pinch dynamic hohlraum radiation pulse. The radiation pulse is produced with a special Z-pinch dynamic hohlraum configuration, where the hohlraum is composed of a single metal liner, a low-Z plastic foam, and a high-Z metallic foam. The implosion dynamics of a hohlraum and a multi-shell target are investigated separately by the one-dimensional code MULTI-IFE. When the peak drive current is 50 MA, simulations suggest that an x-ray pulse with nearly constant radiation temperature (~ 310 eV) and a duration about 9 ns can be obtained. A small multi-shell target with a radius of 1.35 mm driven by this radiation pulse is able to achieve volumetric ignition with an energy gain (G) about 6.19, where G is the ratio of the yield to the absorbed radiation. Through this research, we better understand the effects of non-uniformities and hydrodynamics instabilities in Z-pinch dynamic hohlraum.
Keywords:  Z-pinch      dynamic hohlraum      radiation pulse      volumetric ignition  
Received:  20 March 2021      Revised:  30 April 2021      Accepted manuscript online:  16 May 2021
PACS:  52.58.Lq (Z-pinches, plasma focus, and other pinch devices)  
  52.59.Qy (Wire array Z-pinches)  
Fund: Project supported by the Science Challenge Project (Grant No. TZ2018001), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA25051200 and XDA25050200), the National Natural Science Foundation of China (Grant Nos. 11705282 and 11775305), and Hunan Graduate Scientific Research Innovation Project (Grant No. CX20190001). R.R. has been supported by the spanish “Ministerio de Ciencia Innovación y Universidades” project RTI2018-098801-B-100, the Spanish “Ministerio de Economía y Competitividad” Project ENE2014-54960-R, and the EURO fusion Consortium project AWP15-ENR-01/CEA-02.
Corresponding Authors:  Yan-Yun Ma, Fu-Yuan Wu     E-mail:  yanyunma@126.com;fuyuan.wu@sjtu.edu.cn

Cite this article: 

Shi-Jia Chen(陈诗佳), Yan-Yun Ma(马燕云), Fu-Yuan Wu(吴福源), Xiao-Hu Yang(杨晓虎), Yun Yuan(袁赟), Ye Cui(崔野), and Rafael Ramis Simulations on the multi-shell target ignition driven by radiation pulse in Z-pinch dynamic hohlraum 2021 Chin. Phys. B 30 115201

[1] Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Döppner T, Hinkel D E, Berzak Hopkins L F, Kline J L, Le Pape S, Ma T, Macphee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T and Tommasini R 2014 Nature 506 343
[2] Atzeni S and Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion (Oxford: Oxford University Press)
[3] Lan K, Liu J, Li Z C, Xie X F, Huo W Y, Chen Y H, Ren G L, Zheng C Y, Yang D, Li S W, Yang Z W, Guo L, Li S, Zhang M Y, Han X Y, Zhai C L, Hou L F, Li Y K, Deng K L, Yuan Z, Zhan X Y, Wang F, Yuan G H, Zhang H J, Jiang B B, Huang L Z, Zhang W, Du K, Zhao R C, Li P, Wang W, Su J Q, Deng X W, Hu D X, Zhao W, Jia H T, Ding Y K, Zheng W G and He X T 2016 Matter and Radiation at Extremes 1 8
[4] Kawata S, Karino T and Ogoyski A I 2016 Matter and Radiation at Extremes 1 89
[5] Rochau G A, Bailey J E, Chandler G A, Cooper G, Dunham G S, Lake P W, Leeper R J, Lemke R W, Mehlhorn T A, Nikroo A, Peterson K J, Ruiz C L, Schroen D G, Slutz S A, Steinman D, Stygar W A and Varnum W 2007 Plasma Phys. Control. Fusion 49 B591
[6] Chittenden J P 2000 Phys. World 13 39
[7] Ding N, Zhang Y, Xiao D L, Wu J M, Dai Z H, Yin L, Gao Z M, Sun S K, Xue C, Ning C, Shu X J and Wang J G 2016 Matter and Radiation at Extremes 1 135
[8] Dittrich T R, Hurricane O A, Callahan D A, Dewald E L, Döppner T, Hinkel D E, Berzak Hopkins L F, Le Pape S, Ma T, Milovich J L, Moreno J C, Patel P K, Park H S, Remington B A, Salmonson J D and Kline J L 2014 Phys. Rev. Lett. 112 055002
[9] Kirkpatrick R C, Cremer C C, Madsen L C, Rogers H H and Cooper R S 1975 Nucl. Fusion 15 333
[10] Amendt P, Colvin J D, Tipton R E, Hinkel D E, Edwards M J, Landen O L, Ramshaw J D, Suter L J, Varnum W S and Watt R G 2002 Phys. Plasmas 9 2221
[11] Cobble J A and Sinars D B 2016 Los Alamos National Lab. Report LA-UR-16-24652
[12] Tian C, Yu M H, Shan L Q, Wu Y C, Zhang T K, Bi B, Zhang F, Zhang Q Q, Liu D X and Wang W W 2019 Nucl. Fusion 59 046012
[13] Montgomery D S, Daughton W S, Albright B J, Simakov A N, Wilson D C, Dodd E S, Kirkpatrick R C, Watt R G, Gunderson M A, Loomis E N, Merritt E C, Cardenas T, Amendt P, Milovich J L, Robey H F, Tipton R E and Rosen M D 2018 Phys. Plasmas 25 092706
[14] Molvig K, Schmitt M J, Albright B J, Dodd E S, Hoffman N M, McCall G H and Ramsey S D 2016 Phys. Rev. Lett. 116 255003
[15] Hu S X, Epstein R, Theobald W, Xu H, Huang H, Goncharov V N, Regan S P, McKenty P W, Betti R, Campbell E M and Montgomery D S 2019 Phys. Rev. E 100 063204
[16] Molvig K, Schmitt M J, Betti R, Campbell E M and McKenty P 2018 Phys. Plasmas 25 082708
[17] Scheiner B, Schmitt M J, Hsu S C, Schmidt D, Mance J, Wilde C, Polsin D N, Boehly T R, Marshall F J, Krasheninnikova N, Molvig K and Huang H B 2019 Phys. Plasmas 26 072707
[18] Keenan B D, Taitano W T and Molvig K 2020 Phys. Plasmas 27 042704
[19] Vesey R A, Herrmann M C, Lemke R W, Desjarlais M P, Cuneo M E, Stygar W A, Bennett G R, Campbell R B, Christenson P J, Mehlhorn T A, Porter J L and Slutz S A 2007 Phys. Plasmas 14 056302
[20] Hammer J H, Tabak M, Wilks S C, Lindl J D, Bailey D S, Rambo P W, Toor A and Zimmerman G B 1999 Phys. Plasmas 6 2129
[21] Cuneo M E, Vesey R A, Bennett G R, Sinars D B, Stygar W A, Waisman E M, Porter J L, Rambo P K, Smith I C, Lebedev S V, Chittenden J P, Bliss D E, Nash T J, Chandler G A, Afeyan B B, Yu E P, Campbell R B, Adams R G, Hanson D L, Mehlhorn T A and Matzen M K 2006 Plasma Phys. Control. Fusion 48 R1
[22] Sanford T W L, Lemke R W, Mock R C, Chandler G A, Leeper R J, Ruiz C L, Peterson D L, Chrien R E, Idzorek G C, Watt R G and Chittenden J P 2002 Phys. Plasmas 9 3573
[23] Peng X J and Wang Z 2014 High Power Laser Part. Beams 26 090201
[24] Stygar W A, Awe T J, Bailey J E, Bennett N L, Breden E W, Campbell E M, Clark R E, Cooper R A, Cuneo M E, Ennis J B, Fehl D L, Genoni T C, Gomez M R, Greiser G W, Gruner F R, Herrmann M C, Hutsel B T, Jennings C A, Jobe D O, Jones B M, Jones M C, Jones P A, Knapp P F, Lash J S, LeChien K R, Leckbee J J, Leeper R J, Lewis S A, Long F W, Lucero D J, Madrid E A, Martin M R, Matzen M K, Mazarakis M G, McBride R D, McKee G R, Miller C L, Moore J K, Mostrom C B, Mulville T D, Peterson K J, Porter J L, Reisman D B, Rochau G A, Rochau G E, Rose D V, Rovang D C, Savage M E, Sceiford M E, Schmit P F, Schneider R F, Schwarz J, Sefkow A B, Sinars D B, Slutz S A, Spielman R B, Stoltzfus B S, Thoma C, Vesey R A, Wakeland P E, Welch D R, Wisher M L and Woodworth J R 2015 Phys. Rev. Spec. Top. Accel. Beams 18 110401
[25] Ramis R and Meyer-ter-Vehn J 2016 Comput. Phys. Commun. 203 226
[26] Wu F Y, Chu Y Y, Ye F, Li Z H, Yang J L, Ramis R, Zhen W, Qi J M, Zhou L and Liang C 2017 Acta Phys. Sin. 66 215201 (in Chinese)
[27] Wu F Y, Chu Y Y, Ramis R, Li Z H, Ma Y Y, Yang J L, Wang Z, Ye F, Huang Z C, Qi J M, Zhou L, Liang C, Chen S J, Ge Z Y, Yang X H and Wang S W 2018 Matter and Radiation at Extremes 3 248
[28] Kemp A J and Meyer-ter-Vehn 1998 Nucl. Instrum. Methods A 415 674
[29] Eidmann K 1994 Laser and Particle Beams 12 223
[30] Ye F, Li Z H, Chen F X, Xue F B, Meng S J, Ning J M, Qin Y, Hu Q Y, Jiang S Q, Li L B, Chu Y Y, Yang J L, Xu R K and Xu Z P 2016 Phys. Plasmas 23 064502
[31] Lebedev S V, Beg F N, Bland S N, Chittenden J P, Dangor A E and Haines M G 2002 Phys. Plasmas 9 2293
[32] Slutz S A, Peterson K J, Vesey R A, Lemke R W, Bailey J E, Varnum W, Ruiz C L, Cooper G W, Chandler G A, Rochawu G A and Mehlhorn T A 2006 Phys. Plasmas 13 102701
[33] Xiao D L, Ding N, Ye F, Ning J M, Hu Q Y, Chen F X, Qin Y, Xu R K, Li Z H and Sun S K 2014 Phys. Plasmas 21 042704
[34] Chu Y Y, Wang Z, Qi J M, Wu F Y and Li Z H 2017 Nucl. Fusion 57 066019
[35] Lemke R W, Bailey J E, Chandler G A, Nash T J, Slutz S A and Mehlhorn T A 2005 Phys. Plasmas 12 012703
[36] Chittenden J P and Jennings C A 2008 Phys. Rev. Lett. 101 055005
[37] Peterson K J, Awe T J, Yu E P, Sinars D B, Field E S, Cuneo M E, Herrmann M C, Savage M, Schroen D, Tomlinson K and Nakhleh C 2014 Phys. Rev. Lett. 112 135002
[38] Xiao D L, Sun S K, Zhao Y K, Ding N, Wu J M, Dai Z H, Yin L, Zhang Y and Xue C 2015 Phys. Plasmas 22 052709
[39] Bailey J E, Chandler G A, Slutz S A, Bennett G R, Cooper G, Lash J S, Lazier S, Lemke R, Nash T J, Nielsen D S, Moore T C, Ruiz C L, Schroen D G, Smelser R, Torres J and Vesey R A 2002 Phys. Rev. Lett. 89 095004
[1] Scaling of rise time of drive current on development of magneto-Rayleigh-Taylor instabilities for single-shell Z-pinches
Xiaoguang Wang(王小光), Guanqiong Wang(王冠琼), Shunkai Sun(孙顺凯), Delong Xiao(肖德龙), Ning Ding(丁宁), Chongyang Mao(毛重阳), and Xiaojian Shu(束小建). Chin. Phys. B, 2022, 31(2): 025203.
[2] Numerical study on magneto-Rayleigh-Taylor instabilities for thin liner implosions on the primary test stand facility
Xiao-Guang Wang(王小光), Shun-Kai Sun(孙顺凯), De-Long Xiao(肖德龙), Guan-Qiong Wang(王冠琼), Yang Zhang(张扬), Shao-Tong Zhou(周少彤), Xiao-Dong Ren(任晓东), Qiang Xu(徐强), Xian-Bin Huang(黄显宾), Ning Ding(丁宁), Xiao-Jian Shu(束小建). Chin. Phys. B, 2019, 28(3): 035201.
[3] Preliminary investigation on electrothermal instabilities in early phases of cylindrical foil implosions on primary test stand facility
Guanqiong Wang(王冠琼), Delong Xiao(肖德龙), Jiakun Dan(但家坤), Yang Zhang(张扬), Ning Ding(丁宁), Xianbin Huang(黄显宾), Xiaoguang Wang(王小光), Shunkai Sun(孙顺凯), Chuang Xue(薛创), Xiaojian Shu(束小建). Chin. Phys. B, 2019, 28(2): 025203.
[4] Analytical studies on the evolution processes of rarefied deuterium plasma shell Z-pinch by PIC and MHD simulations
Cheng Ning(宁成), Xiao-Qiang Zhang(张小强), Yang Zhang(张扬), Shun-Kai Sun(孙顺凯), Chuang Xue(薛创), Zhi-Xing Feng(丰志兴), Bai-Wen Li(李百文). Chin. Phys. B, 2018, 27(2): 025207.
[5] Magneto-Rayleigh–Taylor instability in compressible Z-pinch liner plasmas
Xue Yang(杨学), De-Long Xiao(肖德龙), Ning Ding(丁宁), Jie Liu(刘杰). Chin. Phys. B, 2017, 26(7): 075202.
[6] End-on x-ray backlighting experiments for axial diagnostics of wire-array Z-pinch plasma on PPG-1
Shen Zhao(赵屾), Xinlei Zhu(朱鑫磊), Huantong Shi(石桓通), Xiaobing Zou(邹晓兵), Xinxin Wang(王新新). Chin. Phys. B, 2017, 26(1): 015206.
[7] Determining resistance of X-pinch plasma
Zhao Shen (赵屾), Xue Chuang (薛创), Zhu Xin-Lei (朱鑫磊), Zhang Ran (张然), Luo Hai-Yun (罗海云), Zou Xiao-Bing (邹晓兵), Wang Xin-Xin (王新新), Ning Cheng (宁成), Ding Ning (丁宁), Shu Xiao-Jian (束小建). Chin. Phys. B, 2013, 22(4): 045205.
[8] Radiation characteristics and implosion dynamics of tungsten wire array Z-pinches on the YANG accelerator
Huang Xian-Bin(黄显宾), Yang Li-Bing(杨礼兵), Li Jing(李晶), Zhou Shao-Tong(周少彤), Ren Xiao-Dong(任晓东), Zhang Si-Qun(张思群), Dan Jia-Kun(但加坤), Cai Hong-Chun(蔡红春), Duan Shu-Chao(段书超) , Chen Guang-Hua(陈光华), Zhang Zheng-Wei(章征伟), Ouyang Kai(欧阳凯), Jun Li(李军), Zhang Zhao-Hui(张朝辉), Zhou Rong-Guo(周荣国), and Wang Gui-Lin(王贵林) . Chin. Phys. B, 2012, 21(5): 055206.
[9] Spatially-resolved spectroscopic diagnosing of aluminum wire array Z-pinch plasmas on QiangGuang-I facility
Ye Fan (叶凡), Li Zheng-Hong (李正宏), Qin Yi (秦义), Jiang Shu-Qing (蒋树庆), Xue Fei-Biao (薛飞彪), Yang Jian-Lun (杨建伦), Xu Rong-Kun (徐荣昆), Jin Yong-Jie (金永杰). Chin. Phys. B, 2010, 19(7): 075204.
[10] X-ray backlighting of two-wire Z-pinch plasma using X-pinch
Zhao Tong (赵彤), Zou Xiao-Bing (邹晓兵), Zhang Ran (张然), Wang Xin-Xin (王新新). Chin. Phys. B, 2010, 19(7): 075205.
[11] Stability analysis of viscous Z-pinch plasma with a sheared axial flow
Zhang Yang(张扬) and Ding Ning(丁宁). Chin. Phys. B, 2008, 17(8): 2994-3002.
[12] Effects of drive current rise-time and initial load density distribution on Z-pinch characteristics
Duan Yao-Yong (段耀勇), Guo Yong-Hui (郭永辉), Wang Wen-Sheng (王文生), Qiu Ai-Ci (邱爱慈). Chin. Phys. B, 2005, 14(9): 1856-1861.
[13] Study of tungsten wire array Z-pinch implosion on Qiang-Guang I facility
Xu Rong-Kun (徐荣昆), Li Zheng-Hong (李正宏), Yang Jian-Lun (杨建伦), Xu Ze-Ping (许泽平), Ding Ning (丁宁), Guo Cun (郭存), Jiang Shi-Lun (蒋世伦), Ning Jia-Min (宁佳敏), Xia Guang-Xin (夏广新), Li Lin-Bo (李林波), Song Feng-Jun (宋风军), Chen Jin-Chuan (陈进川). Chin. Phys. B, 2005, 14(8): 1613-1617.
[14] Simulation for double shell pinch
Wang Gang-Hua (王刚华), Hu Xi-Jing (胡熙静), Sun Cheng-Wei (孙承纬). Chin. Phys. B, 2004, 13(12): 2105-2108.
No Suggested Reading articles found!