PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Simulations on the multi-shell target ignition driven by radiation pulse in Z-pinch dynamic hohlraum |
Shi-Jia Chen(陈诗佳)1, Yan-Yun Ma(马燕云)2,3,†, Fu-Yuan Wu(吴福源)2,4,‡, Xiao-Hu Yang(杨晓虎)1,2, Yun Yuan(袁赟)1, Ye Cui(崔野)1, and Rafael Ramis5 |
1 Department of Physics, National University of Defense Technology, Changsha 410073, China; 2 IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China; 3 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; 4 Laboratory of Laser Plasmas School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; 5 E. T. S. I. Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Spain |
|
|
Abstract We present the first simulation results of a multi-shell target ignition driven by Z-pinch dynamic hohlraum radiation pulse. The radiation pulse is produced with a special Z-pinch dynamic hohlraum configuration, where the hohlraum is composed of a single metal liner, a low-Z plastic foam, and a high-Z metallic foam. The implosion dynamics of a hohlraum and a multi-shell target are investigated separately by the one-dimensional code MULTI-IFE. When the peak drive current is 50 MA, simulations suggest that an x-ray pulse with nearly constant radiation temperature (~ 310 eV) and a duration about 9 ns can be obtained. A small multi-shell target with a radius of 1.35 mm driven by this radiation pulse is able to achieve volumetric ignition with an energy gain (G) about 6.19, where G is the ratio of the yield to the absorbed radiation. Through this research, we better understand the effects of non-uniformities and hydrodynamics instabilities in Z-pinch dynamic hohlraum.
|
Received: 20 March 2021
Revised: 30 April 2021
Accepted manuscript online: 16 May 2021
|
PACS:
|
52.58.Lq
|
(Z-pinches, plasma focus, and other pinch devices)
|
|
52.59.Qy
|
(Wire array Z-pinches)
|
|
Fund: Project supported by the Science Challenge Project (Grant No. TZ2018001), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA25051200 and XDA25050200), the National Natural Science Foundation of China (Grant Nos. 11705282 and 11775305), and Hunan Graduate Scientific Research Innovation Project (Grant No. CX20190001). R.R. has been supported by the spanish “Ministerio de Ciencia Innovación y Universidades” project RTI2018-098801-B-100, the Spanish “Ministerio de Economía y Competitividad” Project ENE2014-54960-R, and the EURO fusion Consortium project AWP15-ENR-01/CEA-02. |
Corresponding Authors:
Yan-Yun Ma, Fu-Yuan Wu
E-mail: yanyunma@126.com;fuyuan.wu@sjtu.edu.cn
|
Cite this article:
Shi-Jia Chen(陈诗佳), Yan-Yun Ma(马燕云), Fu-Yuan Wu(吴福源), Xiao-Hu Yang(杨晓虎), Yun Yuan(袁赟), Ye Cui(崔野), and Rafael Ramis Simulations on the multi-shell target ignition driven by radiation pulse in Z-pinch dynamic hohlraum 2021 Chin. Phys. B 30 115201
|
[1] Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Döppner T, Hinkel D E, Berzak Hopkins L F, Kline J L, Le Pape S, Ma T, Macphee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T and Tommasini R 2014 Nature 506 343 [2] Atzeni S and Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion (Oxford: Oxford University Press) [3] Lan K, Liu J, Li Z C, Xie X F, Huo W Y, Chen Y H, Ren G L, Zheng C Y, Yang D, Li S W, Yang Z W, Guo L, Li S, Zhang M Y, Han X Y, Zhai C L, Hou L F, Li Y K, Deng K L, Yuan Z, Zhan X Y, Wang F, Yuan G H, Zhang H J, Jiang B B, Huang L Z, Zhang W, Du K, Zhao R C, Li P, Wang W, Su J Q, Deng X W, Hu D X, Zhao W, Jia H T, Ding Y K, Zheng W G and He X T 2016 Matter and Radiation at Extremes 1 8 [4] Kawata S, Karino T and Ogoyski A I 2016 Matter and Radiation at Extremes 1 89 [5] Rochau G A, Bailey J E, Chandler G A, Cooper G, Dunham G S, Lake P W, Leeper R J, Lemke R W, Mehlhorn T A, Nikroo A, Peterson K J, Ruiz C L, Schroen D G, Slutz S A, Steinman D, Stygar W A and Varnum W 2007 Plasma Phys. Control. Fusion 49 B591 [6] Chittenden J P 2000 Phys. World 13 39 [7] Ding N, Zhang Y, Xiao D L, Wu J M, Dai Z H, Yin L, Gao Z M, Sun S K, Xue C, Ning C, Shu X J and Wang J G 2016 Matter and Radiation at Extremes 1 135 [8] Dittrich T R, Hurricane O A, Callahan D A, Dewald E L, Döppner T, Hinkel D E, Berzak Hopkins L F, Le Pape S, Ma T, Milovich J L, Moreno J C, Patel P K, Park H S, Remington B A, Salmonson J D and Kline J L 2014 Phys. Rev. Lett. 112 055002 [9] Kirkpatrick R C, Cremer C C, Madsen L C, Rogers H H and Cooper R S 1975 Nucl. Fusion 15 333 [10] Amendt P, Colvin J D, Tipton R E, Hinkel D E, Edwards M J, Landen O L, Ramshaw J D, Suter L J, Varnum W S and Watt R G 2002 Phys. Plasmas 9 2221 [11] Cobble J A and Sinars D B 2016 Los Alamos National Lab. Report LA-UR-16-24652 [12] Tian C, Yu M H, Shan L Q, Wu Y C, Zhang T K, Bi B, Zhang F, Zhang Q Q, Liu D X and Wang W W 2019 Nucl. Fusion 59 046012 [13] Montgomery D S, Daughton W S, Albright B J, Simakov A N, Wilson D C, Dodd E S, Kirkpatrick R C, Watt R G, Gunderson M A, Loomis E N, Merritt E C, Cardenas T, Amendt P, Milovich J L, Robey H F, Tipton R E and Rosen M D 2018 Phys. Plasmas 25 092706 [14] Molvig K, Schmitt M J, Albright B J, Dodd E S, Hoffman N M, McCall G H and Ramsey S D 2016 Phys. Rev. Lett. 116 255003 [15] Hu S X, Epstein R, Theobald W, Xu H, Huang H, Goncharov V N, Regan S P, McKenty P W, Betti R, Campbell E M and Montgomery D S 2019 Phys. Rev. E 100 063204 [16] Molvig K, Schmitt M J, Betti R, Campbell E M and McKenty P 2018 Phys. Plasmas 25 082708 [17] Scheiner B, Schmitt M J, Hsu S C, Schmidt D, Mance J, Wilde C, Polsin D N, Boehly T R, Marshall F J, Krasheninnikova N, Molvig K and Huang H B 2019 Phys. Plasmas 26 072707 [18] Keenan B D, Taitano W T and Molvig K 2020 Phys. Plasmas 27 042704 [19] Vesey R A, Herrmann M C, Lemke R W, Desjarlais M P, Cuneo M E, Stygar W A, Bennett G R, Campbell R B, Christenson P J, Mehlhorn T A, Porter J L and Slutz S A 2007 Phys. Plasmas 14 056302 [20] Hammer J H, Tabak M, Wilks S C, Lindl J D, Bailey D S, Rambo P W, Toor A and Zimmerman G B 1999 Phys. Plasmas 6 2129 [21] Cuneo M E, Vesey R A, Bennett G R, Sinars D B, Stygar W A, Waisman E M, Porter J L, Rambo P K, Smith I C, Lebedev S V, Chittenden J P, Bliss D E, Nash T J, Chandler G A, Afeyan B B, Yu E P, Campbell R B, Adams R G, Hanson D L, Mehlhorn T A and Matzen M K 2006 Plasma Phys. Control. Fusion 48 R1 [22] Sanford T W L, Lemke R W, Mock R C, Chandler G A, Leeper R J, Ruiz C L, Peterson D L, Chrien R E, Idzorek G C, Watt R G and Chittenden J P 2002 Phys. Plasmas 9 3573 [23] Peng X J and Wang Z 2014 High Power Laser Part. Beams 26 090201 [24] Stygar W A, Awe T J, Bailey J E, Bennett N L, Breden E W, Campbell E M, Clark R E, Cooper R A, Cuneo M E, Ennis J B, Fehl D L, Genoni T C, Gomez M R, Greiser G W, Gruner F R, Herrmann M C, Hutsel B T, Jennings C A, Jobe D O, Jones B M, Jones M C, Jones P A, Knapp P F, Lash J S, LeChien K R, Leckbee J J, Leeper R J, Lewis S A, Long F W, Lucero D J, Madrid E A, Martin M R, Matzen M K, Mazarakis M G, McBride R D, McKee G R, Miller C L, Moore J K, Mostrom C B, Mulville T D, Peterson K J, Porter J L, Reisman D B, Rochau G A, Rochau G E, Rose D V, Rovang D C, Savage M E, Sceiford M E, Schmit P F, Schneider R F, Schwarz J, Sefkow A B, Sinars D B, Slutz S A, Spielman R B, Stoltzfus B S, Thoma C, Vesey R A, Wakeland P E, Welch D R, Wisher M L and Woodworth J R 2015 Phys. Rev. Spec. Top. Accel. Beams 18 110401 [25] Ramis R and Meyer-ter-Vehn J 2016 Comput. Phys. Commun. 203 226 [26] Wu F Y, Chu Y Y, Ye F, Li Z H, Yang J L, Ramis R, Zhen W, Qi J M, Zhou L and Liang C 2017 Acta Phys. Sin. 66 215201 (in Chinese) [27] Wu F Y, Chu Y Y, Ramis R, Li Z H, Ma Y Y, Yang J L, Wang Z, Ye F, Huang Z C, Qi J M, Zhou L, Liang C, Chen S J, Ge Z Y, Yang X H and Wang S W 2018 Matter and Radiation at Extremes 3 248 [28] Kemp A J and Meyer-ter-Vehn 1998 Nucl. Instrum. Methods A 415 674 [29] Eidmann K 1994 Laser and Particle Beams 12 223 [30] Ye F, Li Z H, Chen F X, Xue F B, Meng S J, Ning J M, Qin Y, Hu Q Y, Jiang S Q, Li L B, Chu Y Y, Yang J L, Xu R K and Xu Z P 2016 Phys. Plasmas 23 064502 [31] Lebedev S V, Beg F N, Bland S N, Chittenden J P, Dangor A E and Haines M G 2002 Phys. Plasmas 9 2293 [32] Slutz S A, Peterson K J, Vesey R A, Lemke R W, Bailey J E, Varnum W, Ruiz C L, Cooper G W, Chandler G A, Rochawu G A and Mehlhorn T A 2006 Phys. Plasmas 13 102701 [33] Xiao D L, Ding N, Ye F, Ning J M, Hu Q Y, Chen F X, Qin Y, Xu R K, Li Z H and Sun S K 2014 Phys. Plasmas 21 042704 [34] Chu Y Y, Wang Z, Qi J M, Wu F Y and Li Z H 2017 Nucl. Fusion 57 066019 [35] Lemke R W, Bailey J E, Chandler G A, Nash T J, Slutz S A and Mehlhorn T A 2005 Phys. Plasmas 12 012703 [36] Chittenden J P and Jennings C A 2008 Phys. Rev. Lett. 101 055005 [37] Peterson K J, Awe T J, Yu E P, Sinars D B, Field E S, Cuneo M E, Herrmann M C, Savage M, Schroen D, Tomlinson K and Nakhleh C 2014 Phys. Rev. Lett. 112 135002 [38] Xiao D L, Sun S K, Zhao Y K, Ding N, Wu J M, Dai Z H, Yin L, Zhang Y and Xue C 2015 Phys. Plasmas 22 052709 [39] Bailey J E, Chandler G A, Slutz S A, Bennett G R, Cooper G, Lash J S, Lazier S, Lemke R, Nash T J, Nielsen D S, Moore T C, Ruiz C L, Schroen D G, Smelser R, Torres J and Vesey R A 2002 Phys. Rev. Lett. 89 095004 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|