Simulations on the multi-shell target ignition driven by radiation pulse in Z-pinch dynamic hohlraum
Shi-Jia Chen(陈诗佳)1, Yan-Yun Ma(马燕云)2,3,†, Fu-Yuan Wu(吴福源)2,4,‡, Xiao-Hu Yang(杨晓虎)1,2, Yun Yuan(袁赟)1, Ye Cui(崔野)1, and Rafael Ramis5
1 Department of Physics, National University of Defense Technology, Changsha 410073, China; 2 IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China; 3 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; 4 Laboratory of Laser Plasmas School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; 5 E. T. S. I. Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Spain
Abstract We present the first simulation results of a multi-shell target ignition driven by Z-pinch dynamic hohlraum radiation pulse. The radiation pulse is produced with a special Z-pinch dynamic hohlraum configuration, where the hohlraum is composed of a single metal liner, a low-Z plastic foam, and a high-Z metallic foam. The implosion dynamics of a hohlraum and a multi-shell target are investigated separately by the one-dimensional code MULTI-IFE. When the peak drive current is 50 MA, simulations suggest that an x-ray pulse with nearly constant radiation temperature (~ 310 eV) and a duration about 9 ns can be obtained. A small multi-shell target with a radius of 1.35 mm driven by this radiation pulse is able to achieve volumetric ignition with an energy gain (G) about 6.19, where G is the ratio of the yield to the absorbed radiation. Through this research, we better understand the effects of non-uniformities and hydrodynamics instabilities in Z-pinch dynamic hohlraum.
Fund: Project supported by the Science Challenge Project (Grant No. TZ2018001), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA25051200 and XDA25050200), the National Natural Science Foundation of China (Grant Nos. 11705282 and 11775305), and Hunan Graduate Scientific Research Innovation Project (Grant No. CX20190001). R.R. has been supported by the spanish “Ministerio de Ciencia Innovación y Universidades” project RTI2018-098801-B-100, the Spanish “Ministerio de Economía y Competitividad” Project ENE2014-54960-R, and the EURO fusion Consortium project AWP15-ENR-01/CEA-02.
Shi-Jia Chen(陈诗佳), Yan-Yun Ma(马燕云), Fu-Yuan Wu(吴福源), Xiao-Hu Yang(杨晓虎), Yun Yuan(袁赟), Ye Cui(崔野), and Rafael Ramis Simulations on the multi-shell target ignition driven by radiation pulse in Z-pinch dynamic hohlraum 2021 Chin. Phys. B 30 115201
[1] Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Döppner T, Hinkel D E, Berzak Hopkins L F, Kline J L, Le Pape S, Ma T, Macphee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T and Tommasini R 2014 Nature506 343 [2] Atzeni S and Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion (Oxford: Oxford University Press) [3] Lan K, Liu J, Li Z C, Xie X F, Huo W Y, Chen Y H, Ren G L, Zheng C Y, Yang D, Li S W, Yang Z W, Guo L, Li S, Zhang M Y, Han X Y, Zhai C L, Hou L F, Li Y K, Deng K L, Yuan Z, Zhan X Y, Wang F, Yuan G H, Zhang H J, Jiang B B, Huang L Z, Zhang W, Du K, Zhao R C, Li P, Wang W, Su J Q, Deng X W, Hu D X, Zhao W, Jia H T, Ding Y K, Zheng W G and He X T 2016 Matter and Radiation at Extremes1 8 [4] Kawata S, Karino T and Ogoyski A I 2016 Matter and Radiation at Extremes1 89 [5] Rochau G A, Bailey J E, Chandler G A, Cooper G, Dunham G S, Lake P W, Leeper R J, Lemke R W, Mehlhorn T A, Nikroo A, Peterson K J, Ruiz C L, Schroen D G, Slutz S A, Steinman D, Stygar W A and Varnum W 2007 Plasma Phys. Control. Fusion49 B591 [6] Chittenden J P 2000 Phys. World13 39 [7] Ding N, Zhang Y, Xiao D L, Wu J M, Dai Z H, Yin L, Gao Z M, Sun S K, Xue C, Ning C, Shu X J and Wang J G 2016 Matter and Radiation at Extremes1 135 [8] Dittrich T R, Hurricane O A, Callahan D A, Dewald E L, Döppner T, Hinkel D E, Berzak Hopkins L F, Le Pape S, Ma T, Milovich J L, Moreno J C, Patel P K, Park H S, Remington B A, Salmonson J D and Kline J L 2014 Phys. Rev. Lett.112 055002 [9] Kirkpatrick R C, Cremer C C, Madsen L C, Rogers H H and Cooper R S 1975 Nucl. Fusion15 333 [10] Amendt P, Colvin J D, Tipton R E, Hinkel D E, Edwards M J, Landen O L, Ramshaw J D, Suter L J, Varnum W S and Watt R G 2002 Phys. Plasmas9 2221 [11] Cobble J A and Sinars D B 2016 Los Alamos National Lab. Report LA-UR-16-24652 [12] Tian C, Yu M H, Shan L Q, Wu Y C, Zhang T K, Bi B, Zhang F, Zhang Q Q, Liu D X and Wang W W 2019 Nucl. Fusion59 046012 [13] Montgomery D S, Daughton W S, Albright B J, Simakov A N, Wilson D C, Dodd E S, Kirkpatrick R C, Watt R G, Gunderson M A, Loomis E N, Merritt E C, Cardenas T, Amendt P, Milovich J L, Robey H F, Tipton R E and Rosen M D 2018 Phys. Plasmas25 092706 [14] Molvig K, Schmitt M J, Albright B J, Dodd E S, Hoffman N M, McCall G H and Ramsey S D 2016 Phys. Rev. Lett.116 255003 [15] Hu S X, Epstein R, Theobald W, Xu H, Huang H, Goncharov V N, Regan S P, McKenty P W, Betti R, Campbell E M and Montgomery D S 2019 Phys. Rev. E100 063204 [16] Molvig K, Schmitt M J, Betti R, Campbell E M and McKenty P 2018 Phys. Plasmas25 082708 [17] Scheiner B, Schmitt M J, Hsu S C, Schmidt D, Mance J, Wilde C, Polsin D N, Boehly T R, Marshall F J, Krasheninnikova N, Molvig K and Huang H B 2019 Phys. Plasmas26 072707 [18] Keenan B D, Taitano W T and Molvig K 2020 Phys. Plasmas27 042704 [19] Vesey R A, Herrmann M C, Lemke R W, Desjarlais M P, Cuneo M E, Stygar W A, Bennett G R, Campbell R B, Christenson P J, Mehlhorn T A, Porter J L and Slutz S A 2007 Phys. Plasmas14 056302 [20] Hammer J H, Tabak M, Wilks S C, Lindl J D, Bailey D S, Rambo P W, Toor A and Zimmerman G B 1999 Phys. Plasmas6 2129 [21] Cuneo M E, Vesey R A, Bennett G R, Sinars D B, Stygar W A, Waisman E M, Porter J L, Rambo P K, Smith I C, Lebedev S V, Chittenden J P, Bliss D E, Nash T J, Chandler G A, Afeyan B B, Yu E P, Campbell R B, Adams R G, Hanson D L, Mehlhorn T A and Matzen M K 2006 Plasma Phys. Control. Fusion48 R1 [22] Sanford T W L, Lemke R W, Mock R C, Chandler G A, Leeper R J, Ruiz C L, Peterson D L, Chrien R E, Idzorek G C, Watt R G and Chittenden J P 2002 Phys. Plasmas9 3573 [23] Peng X J and Wang Z 2014 High Power Laser Part. Beams26 090201 [24] Stygar W A, Awe T J, Bailey J E, Bennett N L, Breden E W, Campbell E M, Clark R E, Cooper R A, Cuneo M E, Ennis J B, Fehl D L, Genoni T C, Gomez M R, Greiser G W, Gruner F R, Herrmann M C, Hutsel B T, Jennings C A, Jobe D O, Jones B M, Jones M C, Jones P A, Knapp P F, Lash J S, LeChien K R, Leckbee J J, Leeper R J, Lewis S A, Long F W, Lucero D J, Madrid E A, Martin M R, Matzen M K, Mazarakis M G, McBride R D, McKee G R, Miller C L, Moore J K, Mostrom C B, Mulville T D, Peterson K J, Porter J L, Reisman D B, Rochau G A, Rochau G E, Rose D V, Rovang D C, Savage M E, Sceiford M E, Schmit P F, Schneider R F, Schwarz J, Sefkow A B, Sinars D B, Slutz S A, Spielman R B, Stoltzfus B S, Thoma C, Vesey R A, Wakeland P E, Welch D R, Wisher M L and Woodworth J R 2015 Phys. Rev. Spec. Top. Accel. Beams18 110401 [25] Ramis R and Meyer-ter-Vehn J 2016 Comput. Phys. Commun.203 226 [26] Wu F Y, Chu Y Y, Ye F, Li Z H, Yang J L, Ramis R, Zhen W, Qi J M, Zhou L and Liang C 2017 Acta Phys. Sin.66 215201 (in Chinese) [27] Wu F Y, Chu Y Y, Ramis R, Li Z H, Ma Y Y, Yang J L, Wang Z, Ye F, Huang Z C, Qi J M, Zhou L, Liang C, Chen S J, Ge Z Y, Yang X H and Wang S W 2018 Matter and Radiation at Extremes3 248 [28] Kemp A J and Meyer-ter-Vehn 1998 Nucl. Instrum. Methods A415 674 [29] Eidmann K 1994 Laser and Particle Beams12 223 [30] Ye F, Li Z H, Chen F X, Xue F B, Meng S J, Ning J M, Qin Y, Hu Q Y, Jiang S Q, Li L B, Chu Y Y, Yang J L, Xu R K and Xu Z P 2016 Phys. Plasmas23 064502 [31] Lebedev S V, Beg F N, Bland S N, Chittenden J P, Dangor A E and Haines M G 2002 Phys. Plasmas9 2293 [32] Slutz S A, Peterson K J, Vesey R A, Lemke R W, Bailey J E, Varnum W, Ruiz C L, Cooper G W, Chandler G A, Rochawu G A and Mehlhorn T A 2006 Phys. Plasmas13 102701 [33] Xiao D L, Ding N, Ye F, Ning J M, Hu Q Y, Chen F X, Qin Y, Xu R K, Li Z H and Sun S K 2014 Phys. Plasmas21 042704 [34] Chu Y Y, Wang Z, Qi J M, Wu F Y and Li Z H 2017 Nucl. Fusion57 066019 [35] Lemke R W, Bailey J E, Chandler G A, Nash T J, Slutz S A and Mehlhorn T A 2005 Phys. Plasmas12 012703 [36] Chittenden J P and Jennings C A 2008 Phys. Rev. Lett.101 055005 [37] Peterson K J, Awe T J, Yu E P, Sinars D B, Field E S, Cuneo M E, Herrmann M C, Savage M, Schroen D, Tomlinson K and Nakhleh C 2014 Phys. Rev. Lett.112 135002 [38] Xiao D L, Sun S K, Zhao Y K, Ding N, Wu J M, Dai Z H, Yin L, Zhang Y and Xue C 2015 Phys. Plasmas22 052709 [39] Bailey J E, Chandler G A, Slutz S A, Bennett G R, Cooper G, Lash J S, Lazier S, Lemke R, Nash T J, Nielsen D S, Moore T C, Ruiz C L, Schroen D G, Smelser R, Torres J and Vesey R A 2002 Phys. Rev. Lett.89 095004
Determining resistance of X-pinch plasma Zhao Shen (赵屾), Xue Chuang (薛创), Zhu Xin-Lei (朱鑫磊), Zhang Ran (张然), Luo Hai-Yun (罗海云), Zou Xiao-Bing (邹晓兵), Wang Xin-Xin (王新新), Ning Cheng (宁成), Ding Ning (丁宁), Shu Xiao-Jian (束小建). Chin. Phys. B, 2013, 22(4): 045205.
[8]
Radiation characteristics and implosion dynamics of tungsten wire array Z-pinches on the YANG accelerator Huang Xian-Bin(黄显宾), Yang Li-Bing(杨礼兵), Li Jing(李晶), Zhou Shao-Tong(周少彤), Ren Xiao-Dong(任晓东), Zhang Si-Qun(张思群), Dan Jia-Kun(但加坤), Cai Hong-Chun(蔡红春), Duan Shu-Chao(段书超) , Chen Guang-Hua(陈光华), Zhang Zheng-Wei(章征伟), Ouyang Kai(欧阳凯), Jun Li(李军), Zhang Zhao-Hui(张朝辉), Zhou Rong-Guo(周荣国), and Wang Gui-Lin(王贵林) . Chin. Phys. B, 2012, 21(5): 055206.
Study of tungsten wire array Z-pinch implosion on Qiang-Guang I facility Xu Rong-Kun (徐荣昆), Li Zheng-Hong (李正宏), Yang Jian-Lun (杨建伦), Xu Ze-Ping (许泽平), Ding Ning (丁宁), Guo Cun (郭存), Jiang Shi-Lun (蒋世伦), Ning Jia-Min (宁佳敏), Xia Guang-Xin (夏广新), Li Lin-Bo (李林波), Song Feng-Jun (宋风军), Chen Jin-Chuan (陈进川). Chin. Phys. B, 2005, 14(8): 1613-1617.
[14]
Simulation for double shell pinch Wang Gang-Hua (王刚华), Hu Xi-Jing (胡熙静), Sun Cheng-Wei (孙承纬). Chin. Phys. B, 2004, 13(12): 2105-2108.
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Altmetric
blogs
tweeters
Facebook pages
Wikipedia page
Google+ users
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.