Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 080302    DOI: 10.1088/1674-1056/25/8/080302
GENERAL Prev   Next  

Non-relativistic scattering amplitude for a new multi-parameter exponential-type potential

Yazarloo B H1, Mehraban H1, Hassanabadi H2
1 Physics Department, Semnan University, P. O. Box 35195-363, Semnan, Iran;
2 Physics Department, Shahrood University of Technology, Shahrood, Iran
Abstract  In this paper, we study the scattering properties of s-wave Schrödinger equation for the multi-parameter potential, which can be reduced into four special cases for different values of potential parameters, i.e., Hulthén, Manning-Rosen, and Eckart potentials. We also obtain and investigate the scattering amplitudes of these special cases. Some numerical results are also obtained and reported.
Keywords:  scattering amplitude      Schrödinger equation      multi-parameter potential      phase shifts      cross section  
Received:  03 February 2016      Revised:  26 March 2016      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Nk (Scattering theory)  
Corresponding Authors:  Yazarloo B H     E-mail:  h.yazarloo@students.semnan.ac.ir

Cite this article: 

Yazarloo B H, Mehraban H, Hassanabadi H Non-relativistic scattering amplitude for a new multi-parameter exponential-type potential 2016 Chin. Phys. B 25 080302

[1] Lu B N, Zhao E G and Zhou S G 2012 Phys. Rev. Lett. 109 072501
[2] Guo J Y, Chen S W, Niu Z M, Li D P and Liu Q 2014 Phys. Rev. Lett. 112 062502
[3] Zhou Y and Guo J Y 2008 Chin. Phys. B 17 380
[4] Aydoğdu O, Arda A and Sever R 2012 J. Math. Phys. 53 102111
[5] Wei G F, Liu X Y and Chen W L 2009 Int. J. Theor. Phys. 48 1649
[6] Wei G F, Chen W L and Dong S H 2014 Phys. Lett. A 378 2367
[7] Castilho W M and de Castro A S 2014 Ann. Phys. 346 164
[8] Chen C Y, Lu F L and You Y 2012 Chin. Phys. B 21 030302
[9] Rojas C and Villalba V M 2005 Phys. Rev. A 71 052101
[10] Yazarloo B H, Lu L L, Liu G, Zarrinkamar S and Hassanabadi H 2013 Adv. High Energy Phys. 2013 317605
[11] Zarrinkamar S, Forouhandeh S F, Yazarloo B H and Hassanabadi H 2013 Eur. Phys. J. Plus 128 109
[12] Hassanabadi H, Yazarloo B H, Hassanabadi S, Zarrinkamar S and Salehi N 2013 Acta Phys. Pol. A 124 20
[13] Garcia-Martinez J, Garcia-Ravelo J, Morales J and Pena J J 2012 Int. J. Quantum Chem. 112 195
[14] Arda A, Aydoğdu O and Sever R 2011 Phys. Scr. 84 025004
[15] Chen C Y, Lu F L and Sun D S 2007 Phys. Scr. 76 428
[16] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 267
[17] Yadav R K, Khare A and Mandal B P 2013 Ann. Phys. 331 313
[18] Zarrinkamar S, Rajabi A A, Yazarloo B H and Hassanabadi H 2013 Chin. Phys. C 37 023101
[19] Lam C S and Varshni Y P 1971 Phys. Rev. A 4 1875
[20] Hulthén L, Sugawara M and Flugge S 1957 (ed.), Handbuch der Physik (Berlin:Springer-Verlag)
[21] Berezin A A 1972 Phys. Status Solidi B 50 71
[22] Wang P Q, Zhang L H, Jia C S and Liu J Y 2012 J. Mol. Spectrosc. 274 5
[23] Liu J Y, Zhang G D and Jia C S 2013 Phys. Lett. A 377 1444
[24] Manning M F and Rosen N 1933 Phys. Rev. 44 953
[25] Eckart C 1930 Phys. Rev. 35 1303
[26] Weiss J J 1964 J. Chem. Phys. 41 1120
[1] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[2] State-to-state integral cross sections and rate constants for the N+(3P)+HD→NH+/ND++D/H reaction: Accurate quantum dynamics studies
Hanghang Chen(陈航航), Zijiang Yang(杨紫江), and Maodu Chen(陈茂笃). Chin. Phys. B, 2022, 31(9): 098204.
[3] New experimental measurement of natSe(n, γ) cross section between 1 eV to 1 keV at the CSNS Back-n facility
Xin-Rong Hu(胡新荣), Long-Xiang Liu(刘龙祥), Wei Jiang(蒋伟), Jie Ren(任杰), Gong-Tao Fan(范功涛), Hong-Wei Wang(王宏伟), Xi-Guang Cao(曹喜光), Long-Long Song(宋龙龙), Ying-Du Liu(刘应都), Yue Zhang(张岳), Xin-Xiang Li(李鑫祥), Zi-Rui Hao(郝子锐), Pan Kuang(匡攀), Xiao-He Wang(王小鹤), Ji-Feng Hu(胡继峰), Bing Jiang(姜炳), De-Xin Wang(王德鑫), Suyalatu Zhang(张苏雅拉吐), Zhen-Dong An(安振东), Yu-Ting Wang(王玉廷), Chun-Wang Ma(马春旺), Jian-Jun He(何建军), Jun Su(苏俊), Li-Yong Zhang(张立勇), Yu-Xuan Yang(杨宇萱), Sheng Jin(金晟), and Kai-Jie Chen(陈开杰). Chin. Phys. B, 2022, 31(8): 080101.
[4] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[5] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
[6] Measurement of 232Th (n,γ) cross section at the CSNS Back-n facility in the unresolved resonance region from 4 keV to 100 keV
Bing Jiang(姜炳), Jianlong Han(韩建龙), Jie Ren(任杰), Wei Jiang(蒋伟), Xiaohe Wang(王小鹤), Zian Guo(郭子安), Jianglin Zhang(张江林), Jifeng Hu(胡继峰), Jingen Chen(陈金根), Xiangzhou Cai(蔡翔舟), Hongwei Wang(王宏伟), Longxiang Liu(刘龙祥), Xinxiang Li(李鑫祥), Xinrong Hu(胡新荣), and Yue Zhang(张岳). Chin. Phys. B, 2022, 31(6): 060101.
[7] Neutron activation cross section data library
Xiao-Long Huang(黄小龙), Zhi-Gang Ge(葛智刚), Yong-Li Jin(金永利), Hai-Cheng Wu(吴海成), Xi Tao(陶曦),Ji-Min Wang(王记民), Li-Le Liu(刘丽乐), Yue Zhang(张玥), and Xiao-Fei Wu(吴小飞). Chin. Phys. B, 2022, 31(6): 060102.
[8] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[9] Measurements of the 107Ag neutron capture cross sections with pulse height weighting technique at the CSNS Back-n facility
Xin-Xiang Li(李鑫祥), Long-Xiang Liu(刘龙祥), Wei Jiang(蒋伟), Jie Ren(任杰), Hong-Wei Wang(王宏伟), Gong-Tao Fan(范功涛), Jian-Jun He(何建军), Xi-Guang Cao(曹喜光), Long-Long Song(宋龙龙),Yue Zhang(张岳), Xin-Rong Hu(胡新荣), Zi-Rui Hao(郝子锐), Pan Kuang(匡攀), Bing Jiang(姜炳),Xiao-He Wang(王小鹤), Ji-Feng Hu(胡继峰), Jin-Cheng Wang(王金成), De-Xin Wang(王德鑫),Su-Yalatu Zhang(张苏雅拉吐), Ying-Du Liu(刘应都), Xu Ma(麻旭), Chun-Wang Ma(马春旺),Yu-Ting Wang(王玉廷), Zhen-Dong An(安振东), Jun Su(苏俊), Li-Yong Zhang(张立勇),Yu-Xuan Yang(杨宇萱), Wen-Bo Liu(刘文博), Wan-Qing Su(苏琬晴),Sheng Jin(金晟), and Kai-Jie Chen(陈开杰). Chin. Phys. B, 2022, 31(3): 038204.
[10] Electron excitation processes in low energy collisions of hydrogen-helium atoms
Kun Wang(王堃), Chuan Dong(董川), Yi-Zhi Qu(屈一至), Ling Liu(刘玲), Yong Wu(吴勇),Xu-Hai Hong(洪许海), and Robert J. Buenker. Chin. Phys. B, 2022, 31(12): 123401.
[11] A new global potential energy surface of the ground state of SiH2+ (X2A1) system and dynamics calculations of the Si+ + H2 (v0 = 2, j0 = 0) → SiH+ + H reaction
Yong Zhang(张勇), Xiugang Guo(郭秀刚), and Haigang Yang(杨海刚). Chin. Phys. B, 2022, 31(11): 113101.
[12] Electron-impact ionization cross section calculations for lithium-like ions
Guo-Jie Bian(卞国杰), Jyh-Ching Chang(张稚卿), Ke-Ning Huang(黄克宁), Chen-Sheng Wu(武晨晟), Yong-Jun Cheng(程勇军), Kai Wang(王凯), and Yong Wu(吴勇). Chin. Phys. B, 2022, 31(1): 013401.
[13] State-to-state dynamics of reactions H+DH'(v = 0,j = 0) → HH'(v',j')+D/HD(v',j')+H' with time-dependent quantum wave packet method
Juan Zhao(赵娟), Da-Guang Yue(岳大光), Lu-Lu Zhang(张路路), Shang Gao(高尚), Zhong-Bo Liu(刘中波), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2021, 30(7): 073102.
[14] Elastic electron scattering with formamide-(H2O)n complexes (n=1, 2): Influence of microsolvation on the π* and σ* resonances
Kedong Wang(王克栋), Yan Wang(王言), Jie Liu(刘洁), Yiwen Wang(王怡文), and Haoxing Zhang(张浩兴). Chin. Phys. B, 2021, 30(12): 123401.
[15] Exact quantum dynamics study of the H(2S)+SiH+(X1Σ+) reaction on a new potential energy surface of SiH2+(X2A1)
Wen-Li Zhao(赵文丽), Rui-Shan Tan(谭瑞山), Xue-Cheng Cao(曹学成), Feng Gao(高峰), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2021, 30(12): 123403.
No Suggested Reading articles found!