Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 050303    DOI: 10.1088/1674-1056/25/5/050303
GENERAL Prev   Next  

Path integral approach to electron scattering in classical electromagnetic potential

Chuang Xu(许闯), Feng Feng(冯锋), Ying-Jun Li(李英骏)
School of Science, China University of Mining and Technology, Beijing 100083, China
Abstract  As is known to all, the electron scattering in classical electromagnetic potential is one of the most widespread applications of quantum theory. Nevertheless, many discussions about electron scattering are based upon single-particle Schrodinger equation or Dirac equation in quantum mechanics rather than the method of quantum field theory. In this paper, by using the path integral approach of quantum field theory, we perturbatively evaluate the scattering amplitude up to the second order for the electron scattering by the classical electromagnetic potential. The results we derive are convenient to apply to all sorts of potential forms. Furthermore, by means of the obtained results, we give explicit calculations for the one-dimensional electric potential.
Keywords:  electron scattering      path integral approach      quantum field theory  
Received:  23 August 2015      Revised:  18 December 2015      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  03.70.+k (Theory of quantized fields)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374360, 11405266, and 11505285) and the National Basic Research Program of China (Grant No. 2013CBA01504).
Corresponding Authors:  Chuang Xu, Ying-Jun Li     E-mail:  xu.chuang.phy@gmail.com;lyj@aphy.iphy.ac.cn

Cite this article: 

Chuang Xu(许闯), Feng Feng(冯锋), Ying-Jun Li(李英骏) Path integral approach to electron scattering in classical electromagnetic potential 2016 Chin. Phys. B 25 050303

[1] Dirac P A M 1933 Physik. Zeits. Sowjetunion 3 64
[2] Feynman R P 1948 Rev. Mod. Phys. 20 367
[3] Feynman R P 1963 Acta Phys. Pol. 24 697
[4] Faddeev L D and Popov V N 1967 Phys. Lett. B 25 29
[5] Hooft G't 1971 Nucl. Phys. B 35 167
[6] Englert F and Brout R 1964 Phys. Rev. Lett. 13 321
[7] Higgs P W 1964 Phys. Rev. Lett. 13 508
[8] Higgs P W 1966 Phys. Rev. 145 1156
[9] Weinberg S 1976 Phys. Rev. Lett. 36 294
[10] Yanovsky V, Chvykov V, Kalinchenko G, Rousseau P, Planchon T, Matsuoka T, Maksimchuk A, Nees J, Cheriaux G, Mourou G and Krushelnick K 2008 Opt. Express 16 2109
[11] Faure J, Glinec Y, Pukhov A, Kiselev S, Gordienko S, Lefebvre E, Rousseau J P, Burgy F and Malka V 2004 Nature 431 541
[12] Faure J, Rechatin C, Norlin A, Lifschitz A, Glinec Y and Malka V 2006 Nature 444 737
[13] Schoenlein R W, Leemans W P, Chin A H, Volfbeyn P, Glover T E, Balling P, Zolotorev M, Kim K J, Chattopadhyay S and Shank C V 1996 Science 274 236
[14] Tomassini P, Giulietti A, Giulietti D and Gizzi L A 2005 Appl. Phys. B 80 419
[15] Schwoerer H, Liesfeld B, Schlenvoigt H P, Amthor K U and Sauerbrey R 2006 Phys. Rev. Lett. 96 014802
[16] Jochmann A, Irman A, Bussmann M, Couperus J P, Cowan T E, Debus A D, Kuntzsch M, Ledingham K W D, Lehnert U, Sauerbrey R, Schlenvoigt H P, Seipt D, Stohlker Th, Thorn D B, Trotsenko S, Wagner A and Schramm U 2013 Phys. Rev. Lett. 111 114803
[17] Hartemann F V and Kerman A K 1996 Phys. Rev. Lett. 76 624
[18] Bula C, McDonald K T, Prebys E J, Bamber C, Boege S, Kotseroglou T, Melissinos A C, Meyerhofer D D, Ragg W, Burke D L, Field R C, Horton-Smith G, Odian A C, Spencer J E, Walz D, Berridge S C, Bugg W M, Shmakov K and Weidemann A W 1996 Phys. Rev. Lett. 76 3116
[19] Boca M and Florescu V 2009 Phys. Rev. A 80 053403
[20] Seipt D and Kampfer B 2011 Phys. Rev. A 83 022101
[21] Liang G H, Lü Q Z, Teng A P and Li Y J 2014 Chin. Phys. B 23 054103
[22] Fan H Y, Zhang P F and Wang Z 2015 Chin. Phys. B 24 050303
[23] Peskin M E and Schroeder D V 1995 An Introduction to Quantum Field Theory (Westview Press)
[24] Lehmann H, Symanzik K and Zimmermann W 1955 Nuovo Cimento 1 205
[25] Leo S D and Rotelli P 2009 Eur. Phys. J. C 62 793
[26] Klein O 1929 Z. Phys. 53 157
[27] Nikishov A I 1970 Nucl. Phys. B 21 346
[28] Hansen A and Ravndal F 1981 Phys. Scr. 23 1033
[29] McKellar B H J and Stephenson G J 1987 Phys. Rev. A 36 2566
[30] Manogue C A 1988 Ann. Phys. 181 261
[31] Dombey N and Calogeracos A 1999 Phys. Rep. 315 41
[32] Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
[1] Enhancement of electron-positron pairs in combined potential wells with linear chirp frequency
Li Wang(王莉), Lie-Juan Li(李烈娟), Melike Mohamedsedik(麦丽开·麦提斯迪克), Rong An(安荣), Jing-Jing Li(李静静), Bo-Song Xie(谢柏松), and Feng-Shou Zhang(张丰收). Chin. Phys. B, 2023, 32(1): 010301.
[2] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[3] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
[4] Creation and annihilation phenomena of electron and positron pairs in an oscillating field
M Jiang(江淼), D D Su(苏丹丹), N S Lin(林南省), and Y J Li(李英骏). Chin. Phys. B, 2021, 30(7): 070306.
[5] Selected topics of quantum computing for nuclear physics
Dan-Bo Zhang(张旦波), Hongxi Xing(邢宏喜), Hui Yan(颜辉), Enke Wang(王恩科), and Shi-Liang Zhu(朱诗亮). Chin. Phys. B, 2021, 30(2): 020306.
[6] Elastic electron scattering with formamide-(H2O)n complexes (n=1, 2): Influence of microsolvation on the π* and σ* resonances
Kedong Wang(王克栋), Yan Wang(王言), Jie Liu(刘洁), Yiwen Wang(王怡文), and Haoxing Zhang(张浩兴). Chin. Phys. B, 2021, 30(12): 123401.
[7] Relativistic electron scattering from freely movable proton/μ+ in the presence of strong laser field
Ningyue Wang(王宁月), Liguang Jiao(焦利光), Aihua Liu(刘爱华). Chin. Phys. B, 2019, 28(9): 093402.
[8] Selection rules for electric multipole transition of triatomic molecule in scattering experiments
Hong-Chun Tian(田红春), Long-Quan Xu(徐龙泉), Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2018, 27(4): 043101.
[9] Selection rules for electric multipole transition of diatomic molecule in scattering experiments
Zhu Lin-Fan (朱林繁), Tian Hong-Chun (田红春), Liu Ya-Wei (刘亚伟), Kang Xu (康旭), Liu Guo-Xing (刘国兴). Chin. Phys. B, 2015, 24(4): 043101.
[10] Ionization cross sections for electron scattering from metastable rare-gas atoms (Ne* and Ar*)
Zhang Yong-Zhi (张永志), Zhou Ya-Jun (周雅君). Chin. Phys. B, 2013, 22(7): 073402.
[11] Influence of drain bias on the electron mobility in the AlGaN/AlN/GaN heterostructure field-effect transistors
Lü Yuan-Jie (吕元杰), Feng Zhi-Hong (冯志红), Cai Shu-Jun (蔡树军), Dun Shao-Bo (敦少博), Liu Bo (刘波), Yin Jia-Yun (尹甲运), Zhang Xiong-Wen (张雄文), Fang Yu-Long (房玉龙), Lin Zhao-Jun (林兆军), Meng Ling-Guo (孟令国), Luan Chong-Biao (栾崇彪). Chin. Phys. B, 2013, 22(6): 067104.
[12] Momentum-space calculation of electron-CO elastic collision
Wang Yuan-Cheng (王远成), Ma Jia (马佳), Zhou Ya-Jun (周雅君). Chin. Phys. B, 2013, 22(2): 023402.
[13] Total cross sections for electron scattering from sulfur compounds
Tan Xiao-Ming (谭晓明), Wang Yan-Wen (王艳文). Chin. Phys. B, 2013, 22(2): 023403.
[14] Electron inelastic mean free paths in solids: A theoretical approach
Siddharth H. Pandya, B. G. Vaishnav, K. N. Joshipura. Chin. Phys. B, 2012, 21(9): 093402.
[15] Total cross sections for electron scattering from fluoromethanes: A revised additivity rule method
Tan Xiao-Ming(谭晓明) and Zhao Gang(赵刚) . Chin. Phys. B, 2012, 21(6): 063402.
No Suggested Reading articles found!