Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 013302    DOI: 10.1088/1674-1056/25/1/013302
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Numerical analyses on optical limiting performances of chloroindium phthalocyanines with different substituent positions

Yu-Jin Zhang(张玉瑾)1, Xing-Zhe Li(李兴哲)2, Ji-Cai Liu(刘纪彩)2, Chuan-Kui Wang(王传奎)1
1. College of Physics and Electronics, Shandong Normal University, Jinan 250014, China;
2. Mathematics and Physics Department, North China Electric Power University, Beijing 102206, China
Abstract  Optical limiting properties of two soluble chloroindium phthalocyanines with α-and β -alkoxyl substituents in nanosecond laser field have been studied by solving numerically the coupled singlet-triplet rate equation together with the paraxial wave field equation under the Crank-Nicholson scheme. Both transverse and longitudinal effects of the laser field on photophysical properties of the compounds are considered. Effective transfer time between the ground state and the lowest triplet state is defined in reformulated rate equations to characterize dynamics of singlet-triplet state population transfer. It is found that both phthalocyanines exhibit good nonlinear optical absorption abilities, while the compound with α -substituent shows enhanced optical limiting performance. Our ab-initio calculations reveal that the phthalocyanine with α -substituent has more obvious electron delocalization and lower frontier orbital transfer energies, which are responsible for its preferable photophysical properties.
Keywords:  optical limiting      nanosecond laser field      phthalocyanine  
Received:  29 July 2015      Revised:  21 August 2015      Accepted manuscript online: 
PACS:  33.80.-b (Photon interactions with molecules)  
  82.50.Pt (Multiphoton processes)  
  31.15.A- (Ab initio calculations)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB808100), the National Natural Science Foundation of China (Grant Nos. 11204078 and 11574082), and the Fundamental Research Funds for the Central Universities of China (Grant No. 2015MS54).
Corresponding Authors:  Chuan-Kui Wang     E-mail:  ckwang@sdnu.edu.cn

Cite this article: 

Yu-Jin Zhang(张玉瑾), Xing-Zhe Li(李兴哲), Ji-Cai Liu(刘纪彩), Chuan-Kui Wang(王传奎) Numerical analyses on optical limiting performances of chloroindium phthalocyanines with different substituent positions 2016 Chin. Phys. B 25 013302

[1] Lv Z W, Lv Y L and Yang J 2003 Chin. Phys. 12 507
[2] Niu Y X, Yang H L, Zhang P, Shen X J, Jiang N, Chen Y and Tang F 2008 Chin. Phys. B 17 3367
[3] Naseema K, Manjunatha K B, Sujith K V, Umesh G, Kalluraya B and Rao V 2012 Opt. Mater. 34 1751
[4] Ma H, Leng J C, Liu M, Zhao L N and Jiao Y 2015 Opt. Commun. 350 144
[5] Pritchett T M, Ferry M J, Mott A G, III W S, Haley J E, Liu R and Sun W F 2015 Opt. Mater. 39 195
[6] Miao Q, Zhao P, Sun Y P, Liu J C and Wang C K 2008 Acta Phys. Sin. 58 5455 (in Chinese)
[7] Thekkayil R, Philip R, Gopinath P and John H 2014 Mater. Chem. Phys. 146 218
[8] Zhang Y J, Yang W J, Fan J Z, Song Y Z and Wang C K 2015 Chin. J. Chem. Phys. 28 257
[9] Zhu P W, Wang P, Qiu W F, Liu Y Q and Ye C 2001 Appl. Phys. Lett. 78 1319
[10] Rao S V, Anusha P T, Prashant T S, Swain D and Tewari S P 2011 Mater. Sci. Appl. 2 299
[11] Yao C B, Zhang Y D, Chen D T, Yin H T, Yu C Q, Li J and Yuan P 2013 Opt. Laser Technol. 47 228
[12] García-Frutos E M, Torre G d l, Vázquez P, Shirk J S and Torres T 2009 Eur. J. Org. Chem. 2009 3212
[13] Wang A, Chen X L, Zhang L, Zhang G Y, Zhou L, Lu S, Zhou J H and Wei S H 2014 J. Photoch. Photobio. A 288 1
[14] Lapok L, Cyza M, Gut A, Kępczyński M, Szewczyk G, Sarna T and Nowakowska M 2014 J. Photoch. Photobio. A 286 55
[15] Chen J, Gan Q, Li S Y, Gong F B, Wang Q, Yang Z P, QingWang S, Xu H, Ma J S and Yang G Q 2009 J. Photoch. Photobio. A: Chem. 207 58
[16] Liu Y, Chen Y, Cai L Z, Wang J, Lin Y, Doyle J J and Blau W J 2008 Mater. Chem. Phys. 107 189
[17] Nyokong T 2007 Coordin. Chem. Rev. 251 1707
[18] Snow A W, Shirk J S and Pong R G S 2001 J. Porphy. Phthalocya. 05 582
[19] Wang S Q, Gan Q, Zhang Y F, Li S Y, Xu H J and Yang G Q 2006 Chem. Phys. Chem 7 935
[20] Gavrilyuk S, Liu J C, Kamada K, Ågren H and Gel'mukhanov F 2009 J. Chem. Phys. 130 054114
[21] Wang C K, Zhao P, Miao Q, Sun Y P and Zhou Y 2010 J. Phys. B: At. Mol. Opt. Phys. 43 105601
[22] Miao Q, Ding H J, Sun Y P, Gel'mukhanov F and Wang C K 2012 J. Phys. B: At. Mol. Opt. Phys. 45 085402
[23] Gaussian 09
[1] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
[2] Non-peripherally octaalkyl-substituted nickel phthalocyanines used as non-dopant hole transport materials in perovskite solar cells
Fei Qi(齐飞), Bo Wu(吴波), Junyuan Xu(徐俊源), Qian Chen(陈潜), Haiquan Shan(单海权), Jiaju Xu(许家驹), and Zong-Xiang Xu(许宗祥). Chin. Phys. B, 2021, 30(10): 108801.
[3] Tetraalkyl-substituted zinc phthalocyanines used as anode buffer layers for organic light-emitting diodes
Qian Chen(陈潜), Songhe Yang(杨松鹤), Lei Dong(董磊), Siyuan Cai(蔡思源), Jiaju Xu(许家驹), Zongxiang Xu(许宗祥). Chin. Phys. B, 2020, 29(1): 017302.
[4] Thin-film growth behavior of non-planar vanadium oxide phthalocyanine
Tian-Jiao Liu(刘天娇), Hua-Yan Xia(夏华艳), Biao Liu(刘标), Tim S Jones, Mei Fang(方梅), Jun-Liang Yang(阳军亮). Chin. Phys. B, 2019, 28(8): 088101.
[5] Adsorption behavior of Fe atoms on a naphthalocyanine monolayer on Ag(111) surface
Yan Ling-Hao (闫凌昊), Wu Rong-Ting (武荣庭), Bao De-Liang (包德亮), Ren Jun-Hai (任俊海), Zhang Yan-Fang (张艳芳), Zhang Hai-Gang (张海刚), Huang Li (黄立), Wang Ye-Liang (王业亮), Du Shi-Xuan (杜世萱), Huan Qing (郇庆), Gao Hong-Jun (高鸿钧). Chin. Phys. B, 2015, 24(7): 076802.
[6] A novel solution-based self-assembly approach to preparing ultralong titanyl phthalocyanine sub-micron wires
Zhu Zong-Peng (朱宗鹏), Wei Bin (魏斌), Zhang Jian-Hua (张建华), Wang Jun (王军). Chin. Phys. B, 2014, 23(7): 077202.
[7] Multi-polar resistance switching and memory effect in copper phthalocyanine junctions
Qiao Shi-Zhu (乔士柱), Kang Shi-Shou (康仕寿), Qin Yu-Feng (秦羽丰), Li Qiang (李强), Zhong Hai (钟海), Kang Yun (康韵), Yu Shu-Yun (于淑云), Han Guang-Bing (韩广兵), Yan Shi-Shen (颜世申), Mei Liang-Mo (梅良模). Chin. Phys. B, 2014, 23(5): 058501.
[8] Tailoring optical properties of TiO2 in silica glass for limiting applications
S. Divya, Indu Sebastian, V. P. N. Nampoori, P. Radhakrishnan, A. Mujeeb. Chin. Phys. B, 2014, 23(3): 034210.
[9] Differences in adsorption of FePc on coinage metal surfaces
R.A. Rehman, Cai Yi-Liang (蔡亦良), Zhang Han-Jie (张寒洁), Wu Ke (吴珂), Dou Wei-Dong (窦卫东), Li Hai-Yang (李海洋), He Pi-Mo (何丕模), Bao Shi-Ning (鲍世宁). Chin. Phys. B, 2013, 22(6): 063101.
[10] Increased performance of an organic light-emitting diode by employing a zinc phthalocyanine based composite hole transport layer
Guo Run-Da (郭闰达), Yue Shou-Zhen (岳守振), Wang Peng (王鹏), Chen Yu (陈宇), Zhao Yi (赵毅), Liu Shi-Yong (刘式墉). Chin. Phys. B, 2013, 22(12): 127304.
[11] Organic photovoltaic cells with copper (Ⅱ) tetra-methyl substituted phthalocyanine
Xu Zong-Xiang (许宗祥), Roy V. A. L.. Chin. Phys. B, 2013, 22(12): 128505.
[12] Aluminium phthalocyanine chloride thin films for temperature sensing
Muhammad Tariq Saeed Chani, Abdullah M. Asiri, Kh. S. Karimov, Atif Khan Niaz, Sher Bhadar Khan, Khalid. A. Alamry. Chin. Phys. B, 2013, 22(11): 118101.
[13] Interfacial electronic structure at a metal–phthalocyanine/graphene interface:Copper–phthalocyanine versus iron–phthalocyanine
Ye Wei-Guo (叶伟国), Liu Dan (刘丹), Peng Xiao-Feng (彭啸峰), Dou Wei-Dong (窦卫东). Chin. Phys. B, 2013, 22(11): 117301.
[14] A shortcut for determining growth mode
R. A. Rehman, Cai Yi-Liang (蔡亦良), Zhang Han-Jie (张寒洁), Wu Ke (吴珂), Dou Wei-Dong (窦卫东), Li Hai-Yang (李海洋), He Pi-Mo (何丕模), Bao Shi-Ning (鲍世宁). Chin. Phys. B, 2013, 22(10): 107202.
[15] Self-assembly and growth of manganese phthalocyanine on an Au(111) surface
Jiang Yu-Hang(姜宇航), Liu Li-Wei(刘立巍), Yang Kai(杨锴), Xiao Wen-De(肖文德), and Gao Hong-Jun(高鸿钧) . Chin. Phys. B, 2011, 20(9): 096401.
No Suggested Reading articles found!