Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 010502    DOI: 10.1088/1674-1056/25/1/010502
GENERAL Prev   Next  

Complex dynamics of an archetypal self-excited SD oscillator driven by moving belt friction

Zhi-Xin Li(李志新)1, Qing-Jie Cao(曹庆杰)1, Léger Alain2
1. School of Astronautics, Harbin Institute of Technology, Harbin 150001, China;
2. Laboratoire de Mécanique et d'Acoustique, CNRS, 31, Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
Abstract  

We propose an archetypal self-excited system driven by moving belt friction, which is constructed with the smooth and discontinuous (SD) oscillator proposed by the Cao et al. and the classical moving belt. The moving belt friction is modeled as the Coulomb friction to formulate the mathematical model of the proposed self-excited SD oscillator. The equilibrium states of the unperturbed system are obtained to show the complex equilibrium bifurcations. Phase portraits are depicted to present the hyperbolic structure transition, the multiple stick regions, and the friction-induced asymmetry phenomena. The numerical simulations are carried out to demonstrate the friction-induced vibration of multiple stick-slip phenomena and the stick-slip chaos in the perturbed self-excited system. The results presented here provide an opportunity for us to get insight into the mechanism of the complex friction-induced nonlinear dynamics in mechanical engineering and geography.

Keywords:  self-excited smooth and discontinuous (SD) oscillator      multiple stick regions      friction-induced asymmetry      stick-slip chaos  
Received:  28 June 2015      Revised:  06 August 2015      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Ac (Low-dimensional chaos)  
  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11372082 and 11572096) and the National Basic Research Program of China (Grant No. 2015CB057405).

Corresponding Authors:  Qing-Jie Cao     E-mail:  qingjiecao@hotmail.com

Cite this article: 

Zhi-Xin Li(李志新), Qing-Jie Cao(曹庆杰), Léger Alain Complex dynamics of an archetypal self-excited SD oscillator driven by moving belt friction 2016 Chin. Phys. B 25 010502

[1] Rhee S K, Tsang P H S and Wang Y S 1989 Wear 133 39
[2] Cao Q J, Friswell M I, Ouyang H, Mottershead J E and James S 2003 Mater. Scien. Foru. 440 269
[3] Ouyang H, Cao Q J, Mottershead J E and Treyde 2003 Proceedings of the Institution of Mechanical Engineers Part D: Journal of Automobile Engineering 271 867
[4] Madoliat R, Hayati S and Ghalebahman A G 2011 Scient. Irani. 18 1069
[5] Wiercigroch M and Krivtsov A 2001 Phil. Trans. R. Soc. Lond. A 359 713
[6] Mihajlović N, Van Veggel A A, Van de Wouw N and Nijmeijer H 2004 J. Dyn. Sys. Meas. Control 126 709
[7] Mihajlović N, Van de Wouw N, Hendriks M P M and Nijmeijer H 2006 Non. Dyn. 46 273
[8] Luo A C J and Gegg B C 2006 J. Sound Vibr. 291 132
[9] Li Q H, Chen Y M and Qin Z Y 2011 Chin. Phys. Lett. 28 030502
[10] Sándor B, Járai-Szabó F, Tél T and Néda Z 2013 Phys. Rev. E 87 042920
[11] You H I and Hsia J H 1995 J. Tribology ASME 117 450
[12] Abdo J and Abouelsoud A A 2011 J. Theoretic. Appl. Mecha. 49 971
[13] Hetzler H, Schwarzer D and Seemann W 2007 Commun. Nonlin. Sci. 12 83
[14] Narayanan S and Jayaraman K 1991 J. Sound Vibr. 146 17
[15] Luo A C J and Huang J Z 2012 Nonlin. Anal. Real World Appli. 13 241
[16] Li Q H, Yan Y L, Wei L M and Qin Z Y 2013 Acta Phys. Sin. 62 120505 (in Chinese)
[17] Ouyang H and Mottershead J E 1998 J. Sound Vibr. 209 251
[18] Mohammed A A Y and Rahim I A 2013 I. J. Scien. Tech. Research 2 60
[19] Li B 2007 Analysis of Non-smooth Dynamics of Brake System with Dry-Friction (MS Thesis) (Tianjin: Tianjin University) (in Chinese)
[20] Burridge R and Knopoff L 1967 Bull. Seismol. Soc. Am. 57 341
[21] Carlson J M and Langer J S 1989 Phys. Rev. A 40 6470
[22] Sergienko O V, Macayeal D R and Bindschadler R A 2009 Annals of Glaciology 50 87
[23] Thompson J M T and Hunt G W 1973 A general theory of elastic stability (London: Wiley)
[24] Cao Q J, Wiercigroch M, Pavlovskaia E E, Grebogi C and Thompson J M T 2006 Phys. Rev. E 74 046218
[25] Cao Q J, Wiercigroch M, Pavlovskaia E E, Thompson J M T and Grebogi C 2008 Phil. Trans. R. Soc. A 366 635
[26] Cao Q J, Wiercigroch M, Pavlovskaia E E, Grebogi C and Thompson J M T 2008 Int. J. Nonlin. Mech. 43 462
[27] Filippov A F 1988 Differential Equations with Discontinuous Right-hand Sides (Dordrecht: Kluwer Acadamic)
[28] Tian R L, Yang X W, Cao Q J and Wu Q L 2012 Chin. Phys. B 21 050503
[29] Fathi A and Sharifan N 2013 Appl. Comput. Math. 2 24
[30] Kuznetsov Y A, Rinaldi S and Gragnani A 2003 Int. J. Bifur. Chaos 13 2157
[31] Jiang G R, Xu B G and Yang Q G 2009 Chin. Phys. B 18 5235
[32] Zhang Y and Bi Q S 2011 Chin. Phys. B 20 010504
[33] Jiang H B, Zhang L P and Yu J J 2015 Chin. Phys. B 24 020502
[34] Stefanski A and Kapitaniak T 2000 Disc. Dyn. Nat. Soc. 4 207
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[3] Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system
Huamei Yang(杨华美) and Yuangen Yao(姚元根). Chin. Phys. B, 2023, 32(2): 020501.
[4] Epilepsy dynamics of an astrocyte-neuron model with ammonia intoxication
Zhixuan Yuan(袁治轩), Mengmeng Du(独盟盟), Yangyang Yu(于羊羊), and Ying Wu(吴莹). Chin. Phys. B, 2023, 32(2): 020502.
[5] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[6] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[7] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
[8] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[9] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
[10] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[11] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[12] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[13] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[14] Research and application of stochastic resonance in quad-stable potential system
Li-Fang He(贺利芳), Qiu-Ling Liu(刘秋玲), and Tian-Qi Zhang(张天骐). Chin. Phys. B, 2022, 31(7): 070503.
[15] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
No Suggested Reading articles found!