Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 127401    DOI: 10.1088/1674-1056/24/12/127401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles simulation of Raman spectra and structural properties of quartz up to 5 GPa

Liu Lei (刘雷)a, Lv Chao-Jia (吕超甲)a, Zhuang Chun-Qiang (庄春强)b, Yi Li (易丽)a, Liu Hong (刘红)a, Du Jian-Guo (杜建国)a
a Key Laboratory of Earthquake Prediction, Institute of Earthquake Science, China Earthquake Administration, Beijing 100036, China;
b Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124, China
Abstract  The crystal structure and Raman spectra of quartz are calculated by using first-principles method in a pressure range from 0 to 5 GPa. The results show that the lattice constants (a, c, and V) decrease with increasing pressure and the a-axis is more compressible than the c axis. The Si-O bond distance decreases with increasing pressure, which is in contrast to experimental results reported by Hazen et al. [Hazen R M, Finger L W, Hemley R J and Mao H K 1989 Solid State Communications 725 507-511], and Glinnemann et al. [Glinnemann J, King H E Jr, Schulz H, Hahn T, La Placa S J and Dacol F 1992 Z. Kristallogr. 198 177-212]. The most striking changes are of inter-tetrahedral O-O distances and Si-O-Si angles. The volume of the SiO44- tetrahedron decreased by 0.9% (from 0 to 5 GPa), which suggests that it is relatively rigid. Vibrational models of the quartz modes are identified by visualizing the associated atomic motions. Raman vibrations are mainly controlled by the deformation of the SiO44- tetrahedron and the changes in the Si-O-Si bonds. Vibrational directions and intensities of atoms in all Raman modes just show little deviations when pressure increases from 0 to 5 GPa. The pressure derivatives (dvi/dP) of the 12 Raman frequencies are obtained at 0 GPa-5 GPa. The calculated results show that first-principles methods can well describe the high-pressure structural properties and Raman spectra of quartz. The combination of first-principles simulations of the Raman frequencies of minerals and Raman spectroscopy experiments is a useful tool for exploring the stress conditions within the Earth.
Keywords:  structural properties      Raman mode      quartz      first principles  
Received:  23 July 2015      Revised:  21 August 2015      Accepted manuscript online: 
PACS:  74.25.nd (Raman and optical spectroscopy)  
  62.50.-p (High-pressure effects in solids and liquids)  
  63.20.dk (First-principles theory)  
Fund: Project supported by the Key Laboratory of Earthquake Prediction, Institute of Earthquake Science, China Earthquake Administration (CEA) (Grant No. 2012IES010201) and the National Natural Science Foundation of China (Grant Nos. 41174071 and 41373060).
Corresponding Authors:  Liu Lei     E-mail:  liulei@cea-ies.ac.cn

Cite this article: 

Liu Lei (刘雷), Lv Chao-Jia (吕超甲), Zhuang Chun-Qiang (庄春强), Yi Li (易丽), Liu Hong (刘红), Du Jian-Guo (杜建国) First-principles simulation of Raman spectra and structural properties of quartz up to 5 GPa 2015 Chin. Phys. B 24 127401

[1] Raman C V and Nedungadi T M K 1940 Nature 145 147
[2] Scott J F and Porto S P S 1967 Phys. Rev. 161 903
[3] Asell J F and Nicol M 1968 J. Chem. Phys. 49 5395
[4] Dean K J, Sherman W F and Wilkinson G R 1982 Spectrochim. Acta 38A 1105
[5] Hemley RJ 1987 “Pressure dependence of Raman spectra of SiO2 polymorphs: α $-quartz, coesite, and stishovite”, in Manghnani M H and Syono Y, eds., High-Pressure Research in Mineral Physics (Tokyo-AGU, Washington, D.C.: Terrapub)
[6] Jayaraman A, Wood D L and Maines R G 1987 Phys. Rev. B 35 8136
[7] Liu L and Mernagh T P 1992 High Temperatures-High Pressures 24 13
[8] Bates J B and Quist A S 1972 J. Chem. Phys. 56 1528
[9] Castex J and Madon M 1995 Phys. Chem. Minerals 22 1
[10] Gillet P, Le Cléach A and Madon M 1990 J. Geophys. Res. 95 21635
[11] Schmidt C and Ziemann M A 2000 Am. Mineral 85 1725
[12] Shapiros M, O'Shen D C and Cummins H Z 1967 Phys. Rev. Lett. 19 361
[13] Bist H D, Durig J R and Sullivan J F 1989 Raman spectroscopy: Sixty years on vibrational spectra and structure (Amsterdam: Elsevier)
[14] Gillan M J, Alfe D, Brodholt J, Vocadlo L and Price G D 2006 Rep. Prog. Phys. 69 2365
[15] Jahn S and Kowalski P 2014 Reviews in Mineralogy & Geochemistry 781 691
[16] Peng Q, He C Y, Li J and Zhong J X 2015 Acta Phys. Sin. 64 047102 (in Chinese)
[17] Wang J M, Hu J P, Liu C H and Ouyang C Y 2012 Physics 41 95 (in Chinese)
[18] Zhang P, Kong C and Zheng C 2015 Chin. Phys. B 24 024221
[19] Wei Z, Zhai D and Shao X H 2015 Chin. Phys. B 24 043102
[20] McMillan P F and Hess A C 1990 Phys. Chem. Minerals 17 97
[21] Dračinskŷ M Benda L and Bouř P 2011 Chem. Phys. Lett. 512 54
[22] Le Page Y and Donnay G 1976 Acta Cryst. 32 2456
[23] Fateley WG, Dollish F R, Mcdevitt N T and Bentley F F 1972 Infrared and Raman Selection Rules for Molecular and Lattice Librations: The Correlation Method (New York: Wiley-Interscience)
[24] Refson K, Tulip P R and Clark S J 2006 Phys. Rev. B 73 155114
[25] Kohn W and Sham L J 1965 Phys. Rev. A 140 1133
[26] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864
[27] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K and Payne M C 2005 Z. Kristallogr. 220 567
[28] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
[29] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[30] Hamann D R, Schluter M and Chiang C 1979 Phys. Rev. Lett. 43 1494
[31] Nielsen O H and Martin R M 1983 Phys. Rev. Lett. 50 697
[32] Gonze X 1997 Phys. Rev. B 55 10337
[33] Porezag D and Pederson M R 1996 Phys. Rev. B 54 7830
[34] Antao S M, Hassan I, Wang J, Lee P L and Toby B H 2008 The Canadian Mineralogist 46 1501
[35] Levien L, Prewitt C T and Weidner D J 1980 Am. Mineral 65 920
[36] Hazen R M, Finger L W, Hemley R J and Mao H K 1989 Solid State Commun. 725 507
[37] Glinnemann J, King H E Jr, Schulz H, Hahn T, La Placa S J and Dacol F 1992 Z. Kristallogr. 198 177
[38] Heyliger P, Ledbetter H and Kim S 2003 J. Acoust. Soc. Am. 142 644
[39] Kimizuka H, Ogata S, Li J and Shibutani Y 2007 Phys. Rev. B 75 054109
[40] Zubov V and Firsova M 1962 Sov. Phys. Crystallogr. 7 374
[41] Liu L G and Bassett W A 1986 Element, oxides and silicates, high pressure phases with implications for the Earth's interior (New York: Oxford University Press)
[42] Bose K and Ganguly J 1995 Am. Mineral 80 231
[43] Ono S, Hirose K, Murakami M and Isshiki M 2002 Earth Planet Sci. Lett. 197 187
[44] Murakami M, Hirose K, Ono S and Ohishi Y 2003 Geophys. Res. Lett. 30 1207
[45] Ohno I 1995 J. Phys. Earth 43 157
[46] Hazen RM and Finger W 1985 Sci. Am. 252 110
[47] Briggs R J and Randis A K 1977 Phys. Rev. B 16 3815
[48] Enami M, Nishiyama T and Mouri T 2007 Am. Mineral 92 1303
[49] Xie C, Zhou B and Liu L 2015 Spectroscopy and Spectral Analysis 351 118 (in Chinese)
[1] Boron at tera-Pascal pressures
Peiju Hu(胡佩菊), Junhao Peng(彭俊豪), Xing Xie(谢兴), Minru Wen(文敏儒),Xin Zhang(张欣), Fugen Wu(吴福根), and Huafeng Dong(董华锋). Chin. Phys. B, 2022, 31(3): 036301.
[2] Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I)
Yaowen Long(龙耀文), Hong Zhang(张红), and Xinlu Cheng(程新路). Chin. Phys. B, 2022, 31(2): 027102.
[3] First principles study of hafnium intercalation between graphene and Ir(111) substrate
Hao Peng(彭浩), Xin Jin(金鑫), Yang Song(宋洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2022, 31(10): 106801.
[4] Heterogeneous integration of InP HEMTs on quartz wafer using BCB bonding technology
Yan-Fu Wang(王彦富), Bo Wang(王博), Rui-Ze Feng(封瑞泽), Zhi-Hang Tong(童志航), Tong Liu(刘桐), Peng Ding(丁芃), Yong-Bo Su(苏永波), Jing-Tao Zhou(周静涛), Feng Yang(杨枫), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018502.
[5] Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner. Chin. Phys. B, 2021, 30(9): 097702.
[6] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[7] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
[8] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[9] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[10] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田). Chin. Phys. B, 2020, 29(8): 087202.
[11] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[12] Significant role of nanoscale Bi-rich phase in optimizing thermoelectric performance of Mg3Sb2
Yang Wang(王杨), Xin Zhang(张忻), Yan-Qin Liu(刘燕琴), Jiu-Xing Zhang(张久兴), Ming Yue(岳明). Chin. Phys. B, 2020, 29(6): 067201.
[13] HfN2 monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility
Yuan Sun(孙源), Bin Xu(徐斌), Lin Yi(易林). Chin. Phys. B, 2020, 29(2): 023102.
[14] Effects of square micro-pillar array porosity on the liquid motion of near surface layer
Xiaoxi Qiao(乔小溪), Xiangjun Zhang(张向军), Ping Chen(陈平), Yu Tian(田煜), Yonggang Meng(孟永钢). Chin. Phys. B, 2020, 29(2): 024702.
[15] Microwave-assisted synthesis of Mg:PbI2 nanostructures and their structural, morphological, optical, dielectric and electrical properties for optoelectronic technology
Mohd. Shkir, Ziaul Raza Khan, T Alshahrani, Kamlesh V. Chandekar, M Aslam Manthrammel, Ashwani Kumar, and S AlFaify$. Chin. Phys. B, 2020, 29(11): 116102.
No Suggested Reading articles found!