Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 106601    DOI: 10.1088/1674-1056/24/10/106601
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Analysis of recoverable and permanent components of threshold voltage shift in NBT stressed p-channel power VDMOSFET

Danijel Dankovića, Ninoslav Stojadinovića, Zoran Prijića, Ivica Manića, Vojkan Davidovića, Aneta Prijića, Snežana Djorić-Veljkovićb, Snežana Golubovića
a Department of Microelectronics, Faculty of Electronic Engineering, University of Nis, Serbia;
b Department of Mathematics, Physics and Informatics, Faculty of Civil Engineering and Architecture, University of Nis, Serbia
Abstract  In this study we investigate the dynamic recovery effects in IRF9520 commercial p-channel power vertical double diffused metal-oxide semiconductor field-effect transistors (VDMOSFETs) subjected to negative bias temperature (NBT) stressing under the particular pulsed bias. Particular values of the pulsed stress voltage frequency and duty cycle are chosen in order to analyze the recoverable and permanent components of stress-induced threshold voltage shift in detail. The results are discussed in terms of the mechanisms responsible for buildup of oxide charge and interface traps. The partial recovery during the low level of pulsed gate voltage is ascribed to the removal of recoverable component of degradation, i.e., to passivation/neutralization of shallow oxide traps that are not transformed into the deeper traps (permanent component). Considering the value of characteristic time constant associated with complete removal of the recoverable component of degradation, it is shown that by selecting an appropriate combination of the frequency and duty cycle, the threshold voltage shifts induced under the pulsed negative bias temperature stress conditions can be significantly reduced, which may be utilized for improving the device lifetime in real application circuits.
Keywords:  negative bias temperature instability      vertical double-diffused metal-oxide semiconductor      recoverable      permanent      degradation  
Received:  01 March 2015      Revised:  28 April 2015      Accepted manuscript online: 
PACS:  66.30.Dn (Theory of diffusion and ionic conduction in solids)  
  68.35.bg (Semiconductors)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  82.33.Pt (Solid state chemistry)  
Fund: Project supported by the Fund from the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant Nos. OI-171026 and TR-32026) and the Ei PCB Factory, Niš.
Corresponding Authors:  Danijel Danković     E-mail:  danijel.dankovic@elfak.ni.ac.rs

Cite this article: 

Danijel Danković, Ninoslav Stojadinović, Zoran Prijić, Ivica Manić, Vojkan Davidović, Aneta Prijić, Snežana Djorić-Veljković, Snežana Golubović Analysis of recoverable and permanent components of threshold voltage shift in NBT stressed p-channel power VDMOSFET 2015 Chin. Phys. B 24 106601

[1] Schroder D K and Babcock J A 2003 J. Appl. Phys. 94 1
[2] Stathis J H and Zafar S 2006 Microelectron. Reliab. 46 270
[3] Ogawa S, Shimaya M and Shiono N 1995 J. Appl. Phys. 77 1137
[4] Mahapatra S, Goel N, Desai S, Gupta S, Jose B, Mukhopadhyay S, Joshi K, Jain A, Islam A E and Alam M A 2013 IEEE Trans. Electron Dev. 60 901
[5] Alam M A and Mahapatra S A 2005 Microelectron. Reliab. 45 71
[6] Grasser T, Aichinger T, Pobegen G, Reisinger H, Wagner P J, Franco J, Nelhiebel M and Kaczer B 2011 Proceedings of the 49th IEEE International Reliability Physics Symposium(IRPS2011), ed. Stathis J S (Monterey: EDS and RS of the IEEE) 6A.2.1
[7] Zhang Y, Pu S, Lei X Y, Chen Q, Ma X H and Hao Y 2013 Chin. Phys. B 22 117311
[8] Karim N M, Manzoor S and Soin N 2013 Renewable and Sustainable Energy Reviews 26 776
[9] Alam M A 2003 Technical Digest of the IEDM 345
[10] Zhang Y, Zhuo Q Q, Liu H X, Ma X H and Hao Y 2014 Chin. Phys. B 23 057304
[11] Gamerith S and Polzl M 2002 Microelectron. Reliab. 42 1439
[12] StojadinovićN, DankovićD, Djorić-VeljkovićS, DavidovićV, ManićI and GolubovićS 2005 Microelectron. Reliab. 45 1343
[13] Alwan M, Beydoun B, Ketata K and Zoaeter M 2007 Microelectron. Reliab. 47 1406
[14] Beydoun B, Alwan M, Ketata K and Zoaeter M 2008 J. Active Passive Electron. Dev. 3 77
[15] Tallarico A N, Magnone P, Barletta G, Magrí A, Sangiorgi E and Fiegna C 2014 IEEE Trans. Dev. Mater. Reliab. 14 657
[16] Baliga B J 1987 Modern Power Devices (New York: John Wiley)
[17] Benda V, Gowar J and Grant D A 1999 Power Semiconductor Devices (New York: John Wiley)
[18] Fernández R, Kaczer B, Nackaerts A, Demuynck S, Rodríguez R, Nafria M and Groeseneken G 2006 Technical Digest of the IEDM 1
[19] Mahapatra S, Islam A E, Deora S, Maheta V D, Joshi K, Jain A and Alam M A 2011 Proceedings of the 49th Ann. Int. Reliability Physics Symp.(IRPS2011), ed. Stathis J S (Monterey: EDS and RS of the IEEE) 614
[20] Reisinger H, Grasser T, Ermisch K, H Nielen, Gustin W and Schlünder C 2011 Proceedings of the 49th Ann. Int. Reliability Physics Symp.(IRPS2011), ed. Stathis J S (Monterey: EDS and RS of the IEEE) 597
[21] Desai S, Mukhopadhyay S, Goel N, Nanaware N, Jose B, Joshi K and Mahapatra S 2013 Proceedings of the 51th Ann. Int. Reliability Physics Symp.(IRPS2013), ed. Stathis J S (Anaheim: EDS and RS of the IEEE) XT.2.1
[22] "IRF9520N," Data sheet, International Rectifier 1998. [online] Available: http://www.irf.com
[23] "High amplitude arbitrary/function generator simplifies measurement in automotive, semiconductor, scientific and industrial applications," Application Note, Tektronix, Inc. 2008. [online] Available: http://www.tektronix.com/afg3000
[24] "Agilent 4156C precision semiconductor parameter analyzer", Data sheet, Agilent Technologies Inc. 2009, p. 5. [online] Available: http://www.agilent.com
[25] "Agilent 33502A 2-channel 50 Vpp isolated amplifier", Data sheet, Agilent Technologies Inc. 2009. [online] Available: http://www.agilent.com
[26] Reisinger H, Brunner U, Heinrigs W, Gustin W and Schlunder C 2007 IEEE Trans. Dev. Mater. Reliab. 7 531
[27] Li M F, Huang D, Shen C, Yang T, Liu W J and Liu Z 2008 IEEE Trans. Dev. Mater. Reliab. 8 62
[28] Brisbin D and Chaparala P 2009 IEEE Trans. Dev. Mater. Reliab. 9 115
[29] Schlunder C, Hoffmann M, Vollertsen R, Schindler G, Heinrigs W, Gustin W and Reisinger H 2008 Proceedings of the 46th International Reliability Physics Symposium(IRPS2008), ed. Stathis J S (Pheonix: EDS and RS of the IEEE) 79
[30] Grasser T, Wagner P J, Hehenberger P, Goes W and Kaczer B 2008 IEEE Trans. Dev. Mater. Reliab. 8 526
[31] PrijićA, DankovićD, Vračar Lj, ManićI, PrijićZ and StojadinovićN 2012 Meas. Sci. Technol. 23 1
[32] ManićI, DankovićD, PrijićZ, PrijićA and StojadinovićN 2014 Informacije MIDEM, Journal of Microelectronics, Electronic Components and Materials 44 280
[33] DankovićD, StojadinovićN, PrijićZ, ManićI and PrijićA 2014 Proceedings 29th International Conference on Microelectronics(MIEL), ed. StojadinovićN (Belgrade: EDS of the IEEE) 297
[34] DankovićD, ManićI, Djorić-VeljkovićS, DavidovićV, GolubovićS and StojadinovićN 2009 Microelectronic and Mechanical Systems, ed. Takahata K (Boca Raton, IN-TECH Press) 19.319
[35] StojadinovićN, ManićI, DankovićD, Djorić-VeljkovićS, DavidovićV, PrijićA, GolubovićS and PrijićZ 2014 Bias Temperature Instability for Devices and Circuits, ed. Grasser T (New York: Springer) 533
[36] Ortiz-Conde A, García Sánchez F, Liou J, Cerdeira A, Estrada M and Yue Y 2002 Microelectron. Reliab. 42 583
[37] Nigam T 2008 IEEE Trans. Dev. Mater. Reliab. 8 72
[38] Li M F, Chen G, Shen C, Wang X P, Yu H Y, Yeo Y C and Kwong D L 2004 Jpn. J. Appl. Phys. 43 7807
[39] Ma X H, Cao Y R and Hao Y 2010 Chin. Phys. B 19 117308
[40] Zhu B, Suehle J S, Chen Y and Bernstein J B 2002 Proceedings IEEE IRW FINAL REPORT 125
[41] Mahapatra S 2014 Bias Temperature Instability for Devices and Circuits, ed. Grasser T (New York: Springer) 349
[42] StojadinovićN, ManićI, DavidovićV, DankovićD, Djorić-VeljkovićS, GolubovićS and Dimitrijev S 2005 Microelectron. Reliab. 45 115
[43] StojadinovićN, Djorić-VeljkovićS, DavidovićV, ManićI and GolubovićS 2001 in Proceedings of the 5th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services(TELSIKS2001), ed. MilovanovićB (Niš: IEEE and Faculty of Electronic Engineering) 395
[44] ManićI, DankovićD, Djorić-VeljkovićS, DavidovićV, GolubovićS and StojadinovićN 2009 Microelectron. Reliab. 49 1003
[45] DankovićD, ManićI, DavidovićV, Djorić-VeljkovićS, GolubovićS and StojadinovićN 2007 Microelectron. Reliab. 47 1400
[46] Tan S, Chen T, Ang C and Chan L 2003 Appl. Phys. Lett. 82 269
[47] Dimitrijev S, GolubovićS, Župac D, PejovićM and StojadinovićN 1989 Solid-State Electron. 32 349
[48] Fleetwood D M 2002 Microelectron. Reliab. 42 523
[49] RistićG, PejovićM and JakšićA 2000 J. Appl. Phys. 87 3468
[50] Duan M, Zhang J F, Ji Z, Zhang W D, Kaczer B, Gendt S D and Groeseneken G 2013 IEEE Trans. Electron Dev. 60 413
[51] Gao Y, Ang D S, Bersuker G and Young C D 2013 IEEE Electron Dev. Lett. 34 351
[52] Tsujikawa S, Mine T, Watanabe K, Shimamoto Y, Tsuchiya R, Ohnishi K, Onai T, Yugami J and Kimura S 2003 Proceedings of the 41st Annual International Reliability Physics Symposium(IRPS2003), ed. Snyder E S (Dallas: EDS and RS of the IEEE) 183
[1] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[2] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[3] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[4] Degradation and breakdown behaviors of SGTs under repetitive unclamped inductive switching avalanche stress
Chenkai Zhu(朱晨凯), Linna Zhao(赵琳娜), Zhuo Yang(杨卓), and Xiaofeng Gu(顾晓峰). Chin. Phys. B, 2022, 31(9): 097303.
[5] Degradation of β-Ga2O3 Schottky barrier diode under swift heavy ion irradiation
Wen-Si Ai(艾文思), Jie Liu(刘杰), Qian Feng(冯倩), Peng-Fei Zhai(翟鹏飞), Pei-Pei Hu(胡培培), Jian Zeng(曾健), Sheng-Xia Zhang(张胜霞), Zong-Zhen Li(李宗臻), Li Liu(刘丽), Xiao-Yu Yan(闫晓宇), and You-Mei Sun(孙友梅). Chin. Phys. B, 2021, 30(5): 056110.
[6] Analysis on degradation mechanisms of normally-off p-GaN gate AlGaN/GaN high-electron mobility transistor
Si-De Song(宋思德), Su-Zhen Wu(吴素贞), Guo-Zhu Liu(刘国柱), Wei Zhao(赵伟), Yin-Quan Wang(王印权), Jian-Wei Wu(吴建伟), and Qi He(贺琪). Chin. Phys. B, 2021, 30(4): 047103.
[7] Numerical simulation of acoustic field under mechanical stirring
Jin-He Liu(刘金河), Zhuang-Zhi Shen(沈壮志), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2021, 30(10): 104302.
[8] 57Fe Mössbauer spectrometry: A powerful technique to analyze the magnetic and phase characteristics in RE-Fe-B permanent magnets
Lizhong Zhao(赵利忠), Xuefeng Zhang(张雪峰), Mi Yan(严密), Zhongwu Liu(刘仲武), and Jean-Marc Greneche. Chin. Phys. B, 2021, 30(1): 013302.
[9] A novel method of constructing high-dimensional digital chaotic systems on finite-state automata
Jun Zheng(郑俊), Han-Ping Hu(胡汉平). Chin. Phys. B, 2020, 29(9): 090502.
[10] Coercivity mechanisms in nanostructured permanent magnets
G P Zhao(赵国平), L Zhao(赵莉), L C Shen(沈来川), J Zou(邹静), L Qiu(邱雷). Chin. Phys. B, 2019, 28(7): 077505.
[11] Power of all-fiber amplifier increasing from 1030 W to 2280 W through suppressing mode instability by increasing the seed power
Xue-Xue Luo(罗雪雪), Ru-Mao Tao(陶汝茂), Chen Shi(史尘), Han-Wei Zhang(张汉伟), Xiao-Lin Wang(王小林), Pu Zhou(周朴), Xiao-Jun Xu(许晓军). Chin. Phys. B, 2019, 28(2): 024208.
[12] Simulation of SiC radiation detector degradation
Hai-Li Huang(黄海栗), Xiao-Yan Tang(汤晓燕), Hui Guo(郭辉), Yi-Men Zhang(张义门), Yu-Tian Wang(王雨田), Yu-Ming Zhang(张玉明). Chin. Phys. B, 2019, 28(1): 010701.
[13] Composition design for (PrNd-La–Ce)2Fe14B melt-spun magnets by machine learning technique
Rui Li(李锐), Yao Liu(刘瑶), Shu-Lan Zuo(左淑兰), Tong-Yun Zhao(赵同云), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2018, 27(4): 047501.
[14] Mn-based permanent magnets
Jinbo Yang(杨金波), Wenyun Yang(杨文云), Zhuyin Shao(邵珠印), Dong Liang(梁栋), Hui Zhao(赵辉), Yuanhua Xia(夏元华), Yunbo Yang(杨云波). Chin. Phys. B, 2018, 27(11): 117503.
[15] Rare earth permanent magnets prepared by hot deformation process
Ren-Jie Chen(陈仁杰), Ze-Xuan Wang(王泽轩), Xu Tang(唐旭), Wen-Zong Yin(尹文宗), Chao-Xiang Jin(靳朝相), Jin-Yun Ju(剧锦云), Don Lee(李东), A-Ru Yan(闫阿儒). Chin. Phys. B, 2018, 27(11): 117504.
No Suggested Reading articles found!