CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Analysis of recoverable and permanent components of threshold voltage shift in NBT stressed p-channel power VDMOSFET |
Danijel Dankovića, Ninoslav Stojadinovića, Zoran Prijića, Ivica Manića, Vojkan Davidovića, Aneta Prijića, Snežana Djorić-Veljkovićb, Snežana Golubovića |
a Department of Microelectronics, Faculty of Electronic Engineering, University of Nis, Serbia; b Department of Mathematics, Physics and Informatics, Faculty of Civil Engineering and Architecture, University of Nis, Serbia |
|
|
Abstract In this study we investigate the dynamic recovery effects in IRF9520 commercial p-channel power vertical double diffused metal-oxide semiconductor field-effect transistors (VDMOSFETs) subjected to negative bias temperature (NBT) stressing under the particular pulsed bias. Particular values of the pulsed stress voltage frequency and duty cycle are chosen in order to analyze the recoverable and permanent components of stress-induced threshold voltage shift in detail. The results are discussed in terms of the mechanisms responsible for buildup of oxide charge and interface traps. The partial recovery during the low level of pulsed gate voltage is ascribed to the removal of recoverable component of degradation, i.e., to passivation/neutralization of shallow oxide traps that are not transformed into the deeper traps (permanent component). Considering the value of characteristic time constant associated with complete removal of the recoverable component of degradation, it is shown that by selecting an appropriate combination of the frequency and duty cycle, the threshold voltage shifts induced under the pulsed negative bias temperature stress conditions can be significantly reduced, which may be utilized for improving the device lifetime in real application circuits.
|
Received: 01 March 2015
Revised: 28 April 2015
Accepted manuscript online:
|
PACS:
|
66.30.Dn
|
(Theory of diffusion and ionic conduction in solids)
|
|
68.35.bg
|
(Semiconductors)
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
82.33.Pt
|
(Solid state chemistry)
|
|
Fund: Project supported by the Fund from the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant Nos. OI-171026 and TR-32026) and the Ei PCB Factory, Niš. |
Corresponding Authors:
Danijel Danković
E-mail: danijel.dankovic@elfak.ni.ac.rs
|
Cite this article:
Danijel Danković, Ninoslav Stojadinović, Zoran Prijić, Ivica Manić, Vojkan Davidović, Aneta Prijić, Snežana Djorić-Veljković, Snežana Golubović Analysis of recoverable and permanent components of threshold voltage shift in NBT stressed p-channel power VDMOSFET 2015 Chin. Phys. B 24 106601
|
[1] |
Schroder D K and Babcock J A 2003 J. Appl. Phys. 94 1
|
[2] |
Stathis J H and Zafar S 2006 Microelectron. Reliab. 46 270
|
[3] |
Ogawa S, Shimaya M and Shiono N 1995 J. Appl. Phys. 77 1137
|
[4] |
Mahapatra S, Goel N, Desai S, Gupta S, Jose B, Mukhopadhyay S, Joshi K, Jain A, Islam A E and Alam M A 2013 IEEE Trans. Electron Dev. 60 901
|
[5] |
Alam M A and Mahapatra S A 2005 Microelectron. Reliab. 45 71
|
[6] |
Grasser T, Aichinger T, Pobegen G, Reisinger H, Wagner P J, Franco J, Nelhiebel M and Kaczer B 2011 Proceedings of the 49th IEEE International Reliability Physics Symposium(IRPS2011), ed. Stathis J S (Monterey: EDS and RS of the IEEE) 6A.2.1
|
[7] |
Zhang Y, Pu S, Lei X Y, Chen Q, Ma X H and Hao Y 2013 Chin. Phys. B 22 117311
|
[8] |
Karim N M, Manzoor S and Soin N 2013 Renewable and Sustainable Energy Reviews 26 776
|
[9] |
Alam M A 2003 Technical Digest of the IEDM 345
|
[10] |
Zhang Y, Zhuo Q Q, Liu H X, Ma X H and Hao Y 2014 Chin. Phys. B 23 057304
|
[11] |
Gamerith S and Polzl M 2002 Microelectron. Reliab. 42 1439
|
[12] |
StojadinovićN, DankovićD, Djorić-VeljkovićS, DavidovićV, ManićI and GolubovićS 2005 Microelectron. Reliab. 45 1343
|
[13] |
Alwan M, Beydoun B, Ketata K and Zoaeter M 2007 Microelectron. Reliab. 47 1406
|
[14] |
Beydoun B, Alwan M, Ketata K and Zoaeter M 2008 J. Active Passive Electron. Dev. 3 77
|
[15] |
Tallarico A N, Magnone P, Barletta G, Magrí A, Sangiorgi E and Fiegna C 2014 IEEE Trans. Dev. Mater. Reliab. 14 657
|
[16] |
Baliga B J 1987 Modern Power Devices (New York: John Wiley)
|
[17] |
Benda V, Gowar J and Grant D A 1999 Power Semiconductor Devices (New York: John Wiley)
|
[18] |
Fernández R, Kaczer B, Nackaerts A, Demuynck S, Rodríguez R, Nafria M and Groeseneken G 2006 Technical Digest of the IEDM 1
|
[19] |
Mahapatra S, Islam A E, Deora S, Maheta V D, Joshi K, Jain A and Alam M A 2011 Proceedings of the 49th Ann. Int. Reliability Physics Symp.(IRPS2011), ed. Stathis J S (Monterey: EDS and RS of the IEEE) 614
|
[20] |
Reisinger H, Grasser T, Ermisch K, H Nielen, Gustin W and Schlünder C 2011 Proceedings of the 49th Ann. Int. Reliability Physics Symp.(IRPS2011), ed. Stathis J S (Monterey: EDS and RS of the IEEE) 597
|
[21] |
Desai S, Mukhopadhyay S, Goel N, Nanaware N, Jose B, Joshi K and Mahapatra S 2013 Proceedings of the 51th Ann. Int. Reliability Physics Symp.(IRPS2013), ed. Stathis J S (Anaheim: EDS and RS of the IEEE) XT.2.1
|
[22] |
"IRF9520N," Data sheet, International Rectifier 1998. [online] Available: http://www.irf.com
|
[23] |
"High amplitude arbitrary/function generator simplifies measurement in automotive, semiconductor, scientific and industrial applications," Application Note, Tektronix, Inc. 2008. [online] Available: http://www.tektronix.com/afg3000
|
[24] |
"Agilent 4156C precision semiconductor parameter analyzer", Data sheet, Agilent Technologies Inc. 2009, p. 5. [online] Available: http://www.agilent.com
|
[25] |
"Agilent 33502A 2-channel 50 Vpp isolated amplifier", Data sheet, Agilent Technologies Inc. 2009. [online] Available: http://www.agilent.com
|
[26] |
Reisinger H, Brunner U, Heinrigs W, Gustin W and Schlunder C 2007 IEEE Trans. Dev. Mater. Reliab. 7 531
|
[27] |
Li M F, Huang D, Shen C, Yang T, Liu W J and Liu Z 2008 IEEE Trans. Dev. Mater. Reliab. 8 62
|
[28] |
Brisbin D and Chaparala P 2009 IEEE Trans. Dev. Mater. Reliab. 9 115
|
[29] |
Schlunder C, Hoffmann M, Vollertsen R, Schindler G, Heinrigs W, Gustin W and Reisinger H 2008 Proceedings of the 46th International Reliability Physics Symposium(IRPS2008), ed. Stathis J S (Pheonix: EDS and RS of the IEEE) 79
|
[30] |
Grasser T, Wagner P J, Hehenberger P, Goes W and Kaczer B 2008 IEEE Trans. Dev. Mater. Reliab. 8 526
|
[31] |
PrijićA, DankovićD, Vračar Lj, ManićI, PrijićZ and StojadinovićN 2012 Meas. Sci. Technol. 23 1
|
[32] |
ManićI, DankovićD, PrijićZ, PrijićA and StojadinovićN 2014 Informacije MIDEM, Journal of Microelectronics, Electronic Components and Materials 44 280
|
[33] |
DankovićD, StojadinovićN, PrijićZ, ManićI and PrijićA 2014 Proceedings 29th International Conference on Microelectronics(MIEL), ed. StojadinovićN (Belgrade: EDS of the IEEE) 297
|
[34] |
DankovićD, ManićI, Djorić-VeljkovićS, DavidovićV, GolubovićS and StojadinovićN 2009 Microelectronic and Mechanical Systems, ed. Takahata K (Boca Raton, IN-TECH Press) 19.319
|
[35] |
StojadinovićN, ManićI, DankovićD, Djorić-VeljkovićS, DavidovićV, PrijićA, GolubovićS and PrijićZ 2014 Bias Temperature Instability for Devices and Circuits, ed. Grasser T (New York: Springer) 533
|
[36] |
Ortiz-Conde A, García Sánchez F, Liou J, Cerdeira A, Estrada M and Yue Y 2002 Microelectron. Reliab. 42 583
|
[37] |
Nigam T 2008 IEEE Trans. Dev. Mater. Reliab. 8 72
|
[38] |
Li M F, Chen G, Shen C, Wang X P, Yu H Y, Yeo Y C and Kwong D L 2004 Jpn. J. Appl. Phys. 43 7807
|
[39] |
Ma X H, Cao Y R and Hao Y 2010 Chin. Phys. B 19 117308
|
[40] |
Zhu B, Suehle J S, Chen Y and Bernstein J B 2002 Proceedings IEEE IRW FINAL REPORT 125
|
[41] |
Mahapatra S 2014 Bias Temperature Instability for Devices and Circuits, ed. Grasser T (New York: Springer) 349
|
[42] |
StojadinovićN, ManićI, DavidovićV, DankovićD, Djorić-VeljkovićS, GolubovićS and Dimitrijev S 2005 Microelectron. Reliab. 45 115
|
[43] |
StojadinovićN, Djorić-VeljkovićS, DavidovićV, ManićI and GolubovićS 2001 in Proceedings of the 5th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services(TELSIKS2001), ed. MilovanovićB (Niš: IEEE and Faculty of Electronic Engineering) 395
|
[44] |
ManićI, DankovićD, Djorić-VeljkovićS, DavidovićV, GolubovićS and StojadinovićN 2009 Microelectron. Reliab. 49 1003
|
[45] |
DankovićD, ManićI, DavidovićV, Djorić-VeljkovićS, GolubovićS and StojadinovićN 2007 Microelectron. Reliab. 47 1400
|
[46] |
Tan S, Chen T, Ang C and Chan L 2003 Appl. Phys. Lett. 82 269
|
[47] |
Dimitrijev S, GolubovićS, Župac D, PejovićM and StojadinovićN 1989 Solid-State Electron. 32 349
|
[48] |
Fleetwood D M 2002 Microelectron. Reliab. 42 523
|
[49] |
RistićG, PejovićM and JakšićA 2000 J. Appl. Phys. 87 3468
|
[50] |
Duan M, Zhang J F, Ji Z, Zhang W D, Kaczer B, Gendt S D and Groeseneken G 2013 IEEE Trans. Electron Dev. 60 413
|
[51] |
Gao Y, Ang D S, Bersuker G and Young C D 2013 IEEE Electron Dev. Lett. 34 351
|
[52] |
Tsujikawa S, Mine T, Watanabe K, Shimamoto Y, Tsuchiya R, Ohnishi K, Onai T, Yugami J and Kimura S 2003 Proceedings of the 41st Annual International Reliability Physics Symposium(IRPS2003), ed. Snyder E S (Dallas: EDS and RS of the IEEE) 183
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|