Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 104501    DOI: 10.1088/1674-1056/24/10/104501
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Nonlinear parametrically excited vibration and active control of gear pair system with time-varying characteristic

Liu Shuang (刘爽)a b, Wang Jin-Jin (王进进)a, Liu Jin-Jie (刘金杰)a, Li Ya-Qian (李雅倩)a b
a Key Laboratory of Industrial Computer Control Engineering of Hebei Province, Yanshan University, Qinhuangdao 066004, China;
b National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, China
Abstract  In the present work, we investigate the nonlinear parametrically excited vibration and active control of a gear pair system involving backlash, time-varying meshing stiffness and static transmission error. Firstly, a gear pair model is established in a strongly nonlinear form, and its nonlinear vibration characteristics are systematically investigated through different approaches. Several complicated phenomena such as period doubling bifurcation, anti period doubling bifurcation and chaos can be observed under the internal parametric excitation. Then, an active compensation controller is designed to suppress the vibration, including the chaos. Finally, the effectiveness of the proposed controller is verified numerically.
Keywords:  nonlinear parametrically excited vibration      time-varying meshing stiffness      static transmission error      chaos  
Received:  08 March 2015      Revised:  16 April 2015      Accepted manuscript online: 
PACS:  45.20.dc (Rotational dynamics)  
  43.40.Ga (Nonlinear vibration)  
  43.40.Vn (Active vibration control)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61104040), the Natural Science Foundation of Hebei Province, China (Grant No. E2012203090), and the University Innovation Team of Hebei Province Leading Talent Cultivation Project, China (Grant No. LJRC013).
Corresponding Authors:  Wang Jin-Jin     E-mail:  yandawangjinjin@163.com

Cite this article: 

Liu Shuang (刘爽), Wang Jin-Jin (王进进), Liu Jin-Jie (刘金杰), Li Ya-Qian (李雅倩) Nonlinear parametrically excited vibration and active control of gear pair system with time-varying characteristic 2015 Chin. Phys. B 24 104501

[1] Theodossiades S and Natsiavas S 2000 J. Sound Vib. 229 287
[2] Wang X S, Wu S J, Zhou X H and Li Q L 2008 J. Vib. Shock 27 53 (in Chinese)
[3] Wang S M, Shen Y W and Dong H J 2002 Chin. J. Mech. Eng-En. 38 8 (in Chinese)
[4] Shen Y J, Yang S P and Liu X D 2006 Int. J. Mech. Sci. 48 1256
[5] Chen S Y, Tang J Y and Xie Y D 2009 J. Vib. Shock 28 70 (in Chinese)
[6] Kahraman A and Singh R 1990 J. Sound Vib. 142 49
[7] Blankenship G W and Kahraman A 1995 J. Sound Vib. 185 743
[8] Kahraman A and Blankenship G W 1997 J. Appl. Mech. 64 217
[9] Raghothama A and Narayanan S 1999 J. Sound Vib. 226 469
[10] Wang J, Zheng J and Yang A 2012 Proc. Eng. 31 563
[11] Kahraman A and Singh R 1991 J. Sound Vib. 144 469
[12] Cai W and Chang J 2010 Nonlinear Anal. Real. 11 1760
[13] Wang J J, Li R F and Peng X H 2005 Appl. Mech. Rev. 56 309
[14] Wang J J, Li Q H and Li R F 2005 Adv. Mech. 35 1911
[15] Shi P M, Han D Y and Liu Bin 2010 Chin. Phys. B 19 090306
[16] Liu S, Liu H R Wen Y and Liu B 2010 Acta Phys. Sin. 59 5223(in Chinese)
[17] Liu S, Liu B and Shi P M 2009 Acta Phys. Sin. 58 4383(in Chinese)
[18] Meng Z, Fu L Y and Song M H 2013 Acta Phys. Sin. 62 054501(in Chinese)
[19] Balasubramaniam P, Kalpana M and Rakkiyappan R 2012 Chin. Phys. B 21 048402
[20] Wang X Y and Zhao H 2013 Chin. Phys. B 22048902
[21] EL-Sayed A T 2014 Nonlinear Dyn. 78 1683
[22] Farshidianfar A and Saghafi A 2014 Nonlinear Dyn. 75 783
[23] Firrone C M and Zucca S 2014 Nonlinear Dyn. 76 263
[24] Farshidianfar A and Saghafi A 2014 Nonlinear Dyn. 378 3457
[25] Chen M H and Brennan M J 2000 Smart Mater. Struct. 9 342
[26] Guan Y H, Li M, Limb T C and Jr W S S 2004 J. Sound Vib. 269 273
[27] Sutton T J, Elliott S J and Brennan M 1997 J. Sound Vib. 205 81
[28] Pelinescu I and Balachandran B 2000 Smart Structures and Materials 2000: Smart Structures and Integrated Systems3985 76
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[3] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[4] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[5] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[6] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[7] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[8] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[9] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[10] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[11] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[12] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[13] Dynamics analysis in a tumor-immune system with chemotherapy
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵). Chin. Phys. B, 2021, 30(5): 058201.
[14] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
[15] A multi-directional controllable multi-scroll conservative chaos generator: Modelling, analysis, and FPGA implementation
En-Zeng Dong(董恩增), Rong-Hao Li(李荣昊), and Sheng-Zhi Du(杜升之). Chin. Phys. B, 2021, 30(2): 020505.
No Suggested Reading articles found!