Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 080201    DOI: 10.1088/1674-1056/24/8/080201
GENERAL   Next  

Hamiltonian structure, Darboux transformation for a soliton hierarchy associated with Lie algebra so(4, C)

Wang Xin-Zeng (王新赠)a b, Dong Huan-He (董焕河)b
a State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology (SDUST), Qingdao 266590, China;
b College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266510, China
Abstract  In this paper, we first introduce a Lie algebra of the special orthogonal group, g=so(4, C), whose elements are 4×4 trace-free, skew-symmetric complex matrices. As its application, we obtain a new soliton hierarchy which is reduced to AKNS hierarchy and present its bi-Hamiltonian structure and Liouville integrability. Furthermore, for one of the equations in the resulting hierarchy, we construct a Darboux matrix T depending on the spectral parameter λ.
Keywords:  zero curvature equation      recursion operator      Hamiltonian structure      Darboux transformation  
Received:  23 December 2014      Revised:  24 March 2015      Accepted manuscript online: 
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  03.65.Aa (Quantum systems with finite Hilbert space)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61170183 and 11271007), SDUST Research Fund, China (Grant No. 2014TDJH102), the Fund from the Joint Innovative Center for Safe and Effective Mining Technology and Equipment of Coal Resources, Shandong Province, the Promotive Research Fund for Young and Middle-aged Scientisits of Shandong Province, China (Grant No. BS2013DX012), and the Postdoctoral Fund of China (Grant No. 2014M551934).
Corresponding Authors:  Wang Xin-Zeng     E-mail:  wangelxz@126.com

Cite this article: 

Wang Xin-Zeng (王新赠), Dong Huan-He (董焕河) Hamiltonian structure, Darboux transformation for a soliton hierarchy associated with Lie algebra so(4, C) 2015 Chin. Phys. B 24 080201

[1] Tu G Z 1989 J. Math. Phys. 30 330
[2] Ma W X, Fuchssteiner B and Oevel W 1996 Phys. Lett. A 233 331
[3] Fan E G 2002 Acta Math. Appl. Sin. 18 405
[4] Meng J H and Ma W X 2013 Commun. Theor. Phys. 59 385
[5] Xia T C, You F C and Chen D Y 2005 Chaos, Solitons and Fractals 23 1911
[6] Ma W X 2013 British J. Appl. Sci. Tech. 3 1336
[7] Zhang Y F and Tam H W 2008 Commun. Nonlinear Sci. Numer. Simul. 13 524
[8] Ma W X, Xu X X and Zhang Y F 2006 Phys. Lett. A 351 125
[9] Xia T C and You F C 2007 Chin. Phys. 16 605
[10] Yang H W, Dong H H and Yin B S 2012 Chin. Phys. B 21 100204
[11] Zhang Y F and Liu J 2008 Commun. Theor. Phys. 50 289
[12] Ma W X 2013 Appl. Math. Comput. 220 117
[13] Li Y S, Ma W X and Zhang J E 2000 Phys. Lett. A 275 60
[14] Zeng Y B and Li Y S 1996 Acta Math. Sin. 12 217
[15] Zhang Y F, Han Z and Tam H W 2013 Appl. Math. Comput. 219 5837
[16] Fan E G and Chow K W 2011 J. Math. Phys. 52 023504
[17] Matveev V B and Salle M A 1991 Darboux Transformations and Solitons (Berlin: Springer-Verlag) pp. 108–121
[18] Guo F K and Zhang Y F 2005 J. Phys. A: Math Gen. 38 8537
[19] Ma W X 2012 Chin. Ann. Math. B 33 207
[20] Dong H H and Wei Y 2007 J. Math. Phys. 48 053501
[21] Zhang Y F and Yan Q Y 2003 Acta Phys. Sin. 52 2109 (in Chinese)
[22] Ma W X 2011 Appl. Math. Comput. 217 7238
[23] Zhang Y F 2003 Chin. Phys. 12 1194
[24] Li Y S and Zhang L N 1990 J. Math. Phys. 31 470
[25] Ma W X, He J S and Qin Z Y 2008 J. Math. Phys. 49 033511
[1] Positon and hybrid solutions for the (2+1)-dimensional complex modified Korteweg-de Vries equations
Feng Yuan(袁丰) and Behzad Ghanbari. Chin. Phys. B, 2023, 32(4): 040201.
[2] Darboux transformation and soliton solutions of a nonlocal Hirota equation
Yarong Xia(夏亚荣), Ruoxia Yao(姚若侠), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2022, 31(2): 020401.
[3] Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type
Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2021, 30(3): 030201.
[4] Rational solutions and interaction solutions for (2 + 1)-dimensional nonlocal Schrödinger equation
Mi Chen(陈觅) and Zhen Wang(王振). Chin. Phys. B, 2020, 29(12): 120201.
[5] Soliton molecules and dynamics of the smooth positon for the Gerdjikov–Ivanov equation
Xiangyu Yang(杨翔宇), Zhao Zhang(张钊), and Biao Li(李彪)†. Chin. Phys. B, 2020, 29(10): 100501.
[6] A note on “Lattice soliton equation hierarchy and associated properties”
Xi-Xiang Xu(徐西祥), Min Guo(郭敏). Chin. Phys. B, 2019, 28(1): 010202.
[7] Localized waves of the coupled cubic-quintic nonlinear Schrödinger equations in nonlinear optics
Tao Xu(徐涛), Yong Chen(陈勇), Ji Lin(林机). Chin. Phys. B, 2017, 26(12): 120201.
[8] Localized waves in three-component coupled nonlinear Schrödinger equation
Tao Xu(徐涛), Yong Chen(陈勇). Chin. Phys. B, 2016, 25(9): 090201.
[9] A new six-component super soliton hierarchy and its self-consistent sources and conservation laws
Han-yu Wei(魏含玉) and Tie-cheng Xia(夏铁成). Chin. Phys. B, 2016, 25(1): 010201.
[10] Rogue-wave pair and dark-bright-rogue wave solutions of the coupled Hirota equations
Wang Xin (王鑫), Chen Yong (陈勇). Chin. Phys. B, 2014, 23(7): 070203.
[11] A novel hierarchy of differential–integral equations and their generalized bi-Hamiltonian structures
Zhai Yun-Yun (翟云云), Geng Xian-Guo (耿献国), He Guo-Liang (何国亮). Chin. Phys. B, 2014, 23(6): 060201.
[12] Deformed soliton, breather, and rogue wave solutions of an inhomogeneous nonlinear Schrödinger equation
Tao Yong-Sheng (陶勇胜), He Jing-Song (贺劲松), K. Porsezian. Chin. Phys. B, 2013, 22(7): 074210.
[13] N-soliton solutions of an integrable equation studied by Qiao
Zhaqilao (扎其劳). Chin. Phys. B, 2013, 22(4): 040201.
[14] Two new discrete integrable systems
Chen Xiao-Hong (陈晓红), Zhang Hong-Qing (张鸿庆). Chin. Phys. B, 2013, 22(3): 030203.
[15] Lattice soliton equation hierarchy and associated properties
Zheng Xin-Qing (郑新卿), Liu Jin-Yuan (刘金元). Chin. Phys. B, 2012, 21(9): 090202.
No Suggested Reading articles found!