Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 077506    DOI: 10.1088/1674-1056/24/7/077506
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Equivalent circuit model including magnetic and thermo sources for the thermo–magneto–electric coupling effect in magnetoelectric laminates

Cui Xiao-Le (崔晓乐), Zhou Hao-Miao (周浩淼)
College of Information Engineering, China Jiliang University, Hangzhou 310018, China
Abstract  The nonlinear thermo–magneto–mechanical magnetostrictive constitutive and the linear thermo–mechanical-electric piezoelectric constitutive are adopted in this paper. The bias magnetic field and ambient temperature are equivalent to a magnetic source and a thermo source, respectively. An equivalent circuit, which contains a magnetic source and a thermo source at the input, for the thermo–magneto–electric coupling effect in magnetoelectric (ME) laminates, is established. The theoretical models of the output voltage and static ME coefficient for ME laminates can be derived from this equivalent circuit model. The predicted static ME coefficient versus temperature curves are in excellent agreement with the experimental data available both qualitatively and quantitatively. It confirms the validity of the proposed model. Then the models are adopted to predict variations in the output voltages and ME coefficients in the laminates under different ambient temperatures, bias magnetic fields, and the volume ratios of magnetostrictive phases. This shows that the output voltage increases with both increasing temperature and increasing volume ratio of magnetostrictive phases; the ME coefficient decreases with increasing temperature; the ME coefficient shows an initial sharp increase and then decreases slowly with the increase in the bias magnetic field, and there is an optimum volume ratio of magnetostrictive phases that maximize the ME coefficient. This paper can not only provide a new idea for the study of the thermo–magneto–electric coupling characteristics of ME laminates, but also provide a theoretical basis for the design and application of ME laminates, operating under different sensors.
Keywords:  magnetoelectric laminates      thermo-magneto-electric coupling effect      thermo source      magneto source  
Received:  16 October 2014      Revised:  05 February 2015      Accepted manuscript online: 
PACS:  75.85.+t (Magnetoelectric effects, multiferroics)  
  77.55.Nv (Multiferroic/magnetoelectric films)  
  75.80.+q (Magnetomechanical effects, magnetostriction)  
  77.65.-j (Piezoelectricity and electromechanical effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11172285 and 11472259) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LR13A020002).
Corresponding Authors:  Zhou Hao-Miao     E-mail:  zhouhm@cjlu.edu.cn

Cite this article: 

Cui Xiao-Le (崔晓乐), Zhou Hao-Miao (周浩淼) Equivalent circuit model including magnetic and thermo sources for the thermo–magneto–electric coupling effect in magnetoelectric laminates 2015 Chin. Phys. B 24 077506

[1] Nan C W, Bichurin M I, Dong S X, Viehland D and Srinivasan G 2008 J. Appl. Phys. 103 031101
[2] Rao W, Wang Y B, Wang Y A, Gao J X, Zhou W L and Yu J 2014 Chin. Phys. Lett. 31 017503
[3] Wan H, Shen R F and Wu X Z 2005 Acta Phys. Sin. 54 1426 (in Chinese)
[4] Dong S X, Li J F and Viehland D 2004 Appl. Phys. Lett. 85 2307
[5] Dong S X, Li J F and Viehland D 2004 Appl. Phys. Lett. 84 4188
[6] Pan D A, Zhang S G, Tian J J, Sun J S, Volinsky A A and Qiao L J 2010 Chin. Phys. B 19 027201
[7] Dai X Z, Wen Y M, Li P, Yang J and Zhang G Y 2009 Sens. Actuat. A 156 350
[8] Dai X Z, Wen Y M, Li P, Yang J and Jiang X F 2010 Acta Phys. Sin. 59 2137 (in Chinese)
[9] Chen L, Li P, Wen Y M and Qiu J 2012 J. Appl. Phys. 111 07E503
[10] Zhu Y and Zu J W 2012 IEEE Tran. Magn. 48 3344
[11] Nan C W, Li M and Jin H 2001 Phys. Rev. B 63 144415
[12] Nan C W, Liu G, Lin Y H and Chen H 2005 Phys. Rev. Lett. 94 197203
[13] Filippov D A 2005 Phys. Solid State 47 1118
[14] Filippov D A, Galichyan T A and Laletin V M 2014 Appl. Phys. A 115 1087
[15] Filippov D A, Galichyan T A and Laletin V M 2014 Appl. Phys. A 116 2167
[16] Cao H X and Zhang N 2008 Acta Phys. Sin. 57 3237 (in Chinese)
[17] Zhou J P, Shi Z, Liu G, He H C and Nan C W 2006 Acta Phys. Sin. 55 3766 (in Chinese)
[18] Wan H, Xie L Q, Wu X Z and Liu X C 2005 Acta Phys. Sin. 54 3872 (in Chinese)
[19] Dong S X, Li J F and Viehland D 2003 IEEE Tran. Ultrason. Ferr. 50 1253
[20] Dong S X, Li J F and Viehland D 2004 J. Appl. Phys. 95 2625
[21] Dong S X, Li J F and Viehland D 2006 J. Mater. Sci. 41 97
[22] Dong S X and Zhai J Y 2008 Chin. Sci. Bull. 53 2113
[23] Zhou H M, Li C, Xuan L M, Wei J and Zhao J X 2011 Smart Mater. Struct. 20 035001
[24] Xiao Y, Zhou H M, Ou X W and Li C 2012 CMC-Comput. Mater. Con. 27 1
[25] Zhou H M, Ou X W, Xiao Y, Qu S X and Wu H P 2013 Smart Mater. Struct. 22 035018
[26] Yang F, Wen Y M, Lin P, Zheng M and Bian L X 2007 Acta Phys. Sin. 56 3539 (in Chinese)
[27] Clark A E and Crowder D N 1985 IEEE Tran. Magn. 21 1945
[28] Kendall D and Piercy A R 1990 IEEE Tran. Magn. 26 1837
[29] Restorff J B, Wun-Fogle M and Clark A E 2000 J. Appl. Phys. 87 5786
[30] Kwon O Y, Kim J C, Kwon Y D, Yang D J, Lee S H, Lee Z H and Hong S H 2005 Appl. Phys. A 80 1563
[31] Zheng X J and Sun L 2006 J. Appl. Phys. 100 063906
[32] Liang Y R and Zheng X J 2007 Acta Mech. Sol. Sin. 20 283
[33] Wolf R A and Trolier-McKinstry S 2004 J. Appl. Phys. 95 1397
[34] Burianova L, Hana P, Pustka M, Prokopova M and Nosek J 2005 J. Eur. Ceram. Soc. 25 2405
[35] Zhang N, Srinivasan G and Balbashov A M 2009 J. Mater. Sci. 44 5120
[36] Vaz C A F, Segal Y, Hoffman J, Grober R D, Walker F J and Ahn C H 2010 Appl. Phys. Lett. 97 042506
[37] Fang F, Xu Y T and Yang W 2012 J. Appl. Phys. 111 023906
[38] Zhou H M and Cui X L 2014 J. Appl. Phys. 115 083905
[39] Bichurin M I, Petrov V M and Srinivasan G 2003 Phys. Rev. B 68 054402
[1] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[2] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[3] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[4] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[5] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[6] Intrinsic two-dimensional multiferroicity in CrNCl2 monolayer
Wei Shen(沈威), Yuanhui Pan(潘远辉), Shengnan Shen(申胜男), Hui Li(李辉), Siyuan Nie(聂思媛), and Jie Mei(梅杰). Chin. Phys. B, 2021, 30(11): 117503.
[7] Recent advances, perspectives, and challenges inferroelectric synapses
Bo-Bo Tian(田博博), Ni Zhong(钟妮), Chun-Gang Duan(段纯刚). Chin. Phys. B, 2020, 29(9): 097701.
[8] Enhanced ferromagnetism and magnetoelectric response in quenched BiFeO3-based ceramics
Qi Pan(潘祺), Bao-Jin Chu(初宝进). Chin. Phys. B, 2020, 29(8): 087501.
[9] Ionic liquid gating control of planar Hall effect in Ni80Fe20/HfO2 heterostructures
Yang-Ping Wang(汪样平), Fu-Fu Liu(刘福福), Cai Zhou(周偲), Chang-Jun Jiang(蒋长军). Chin. Phys. B, 2020, 29(7): 077507.
[10] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
[11] Magnetoelectric effects in multiferroic Y-type hexaferrites Ba0.3Sr1.7CoxMg2-xFe12O22
Yanfen Chang(畅艳芬), Kun Zhai(翟昆), Young Sun(孙阳). Chin. Phys. B, 2020, 29(3): 037701.
[12] Unusual tunability of multiferroicity in GdMn2O5 by electric field poling far above multiferroic ordering point
Xiang Li(李翔), Shuhan Zheng(郑书翰), Liman Tian(田礼漫), Rui Shi(石锐), Meifeng Liu(刘美风), Yunlong Xie(谢云龙), Lun Yang(杨伦), Nian Zhao(赵念), Lin Lin(林林), Zhibo Yan(颜志波), Xiuzhang Wang(王秀章), Junming Liu(刘俊明). Chin. Phys. B, 2019, 28(2): 027502.
[13] Voltage control of ferromagnetic resonance and spin waves
Xinger Zhao(赵星儿), Zhongqiang Hu(胡忠强), Qu Yang(杨曲), Bin Peng(彭斌), Ziyao Zhou(周子尧), Ming Liu(刘明). Chin. Phys. B, 2018, 27(9): 097505.
[14] Magnetism manipulation in ferromagnetic/ferroelectric heterostructures by electric field induced strain
Xiaobin Guo(郭晓斌), Dong Li(李栋), Li Xi(席力). Chin. Phys. B, 2018, 27(9): 097506.
[15] Enhanced magneto-electric effect in manganite tricolor superlattice with artificially broken symmetry
Huanyu Pei(裴环宇), Shujin Guo(郭蜀晋), Hong Yan(闫虹), Changle Chen(陈长乐), Bingcheng Luo(罗炳成), Kexin Jin(金克新). Chin. Phys. B, 2018, 27(9): 097701.
No Suggested Reading articles found!