Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 073101    DOI: 10.1088/1674-1056/24/7/073101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Optimal migration path of Ag in HfO2: A first-principles study

Dai Yue-Hua (代月花)a, Chen Zhen (陈真)a, Jin Bo (金波)a, Li Ning (李宁)a, Li Xiao-Feng (李晓风)b
a Institute of Electronic and Information Engineering, Anhui University, Hefei 230601, China;
b Internet Network Information Center, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
Abstract  First-principles calculations are used to investigate the migration path of Ag in the HfO2-based resistive random access memory (ReRAM). The formation energy calculation suggests that there are two different sites (site 1 and site 3) for the incorporation of Ag atoms into the HfO2 unit cell. Thermodynamic analysis shows that the motion of Ag atom in the HfO2 supercell appears to be anisotropic, which is due to the fact that the Ag atom at site 3 moves along the [111] orientation, but the Ag atom at site 1 moves along the [001] orientation. The migration barriers of the Ag atoms hopping between neighboring unit cells are calculated along five different orientations. Difficulty in producing motion of the Ag atom varies with the migration barrier: this motion is minimized along [111] orientation. Furthermore, The optimal circulation path for Ag migration within the HfO2 supercells is obtained, and is found to be approximately along the [111] orientation. Therefore, it is proposed that the positive voltage should be applied along this orientation, the conduction filament may form more easily, which could improve the response time and reduce the power consumption in ReRAM applications.
Keywords:  HfO2      resistive random access memory      Ag migration      migration orientation  
Received:  16 January 2015      Revised:  21 February 2015      Accepted manuscript online: 
PACS:  31.15.A- (Ab initio calculations)  
  71.15.-m (Methods of electronic structure calculations)  
  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
  85.35.-p (Nanoelectronic devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61376106).
Corresponding Authors:  Dai Yue-Hua     E-mail:  daiyuehua2013@163.com

Cite this article: 

Dai Yue-Hua (代月花), Chen Zhen (陈真), Jin Bo (金波), Li Ning (李宁), Li Xiao-Feng (李晓风) Optimal migration path of Ag in HfO2: A first-principles study 2015 Chin. Phys. B 24 073101

[1] Waser R and Aono M 2007 Nat. Mater. 6 833
[2] Schroeder H, Pandian R and Miao J 2011 Phys. Status Solidi A 208 300
[3] Yang J J, Strukov D B and Stewart D R 2013 Nat. Nanotechnol. 8 13
[4] Lu W, Jeong D S, Kozicki M and Waser R 2012 MRS Bull. 37 124
[5] Li Y T, Long S B, Lu H B, Liu Q, Wang Q, Wang Y, Zhang S, Lian W T, Liu S and Liu M 2011 Chin. Phys. B 20 017305
[6] Lei X Y, Liu H X, Gao H X, Yang H N, Wang G M, Long S B, Ma X H and Liu M 2014 Chin. Phys. B 23 117305
[7] Gonon P, Mougenot M, Vallée C, Jorel C, Jousseaume V, Grampeix H, and El Kamel F 2010 J. Appl. Phys. 107 074507
[8] Kerber A and Cartier E A 2009 IEEE Trans. Dev. Mater. Reliab. 9 147
[9] Wang Y, Liu Q, Long S B, Wang W, Wang Q, Zhang M H, Zhang S, Li Y T, Zuo Q Y, Yang J H and Liu M 2010 Nanotechnology 21 045202
[10] Waser R, Dittmann R, Staikov G and Szot K 2009 Adv. Mater. 21 2632
[11] Liu Q, Sun J, Lv H B, Long S B, Yin K B, Wang N, Li Y T, Sun L T and Liu M 2012 Adv. Mater. 24 1844
[12] Tian X Z, Yang S Z, Zeng M, Wang L F, Wei J K, Xu Z, Wang W L and Bai X D 2014 Adv. Mater. 26 3649
[13] Yang J J, Gao P, Li L, Pan X, Tappertzhofen S, Choi S, Waser R, Valov I, and Lu W D 2014 Nat Commun. 5 4232
[14] Yang Y C, Pan F, Liu Q, Liu M and Zeng F 2009 Nano Lett. 9 1636
[15] Wang Z W, Shu D J, Wang M and Ming N B 2012 Surf. Sci. 606 186
[16] Zhu L G, Hu Q M and Yang R 2014 J. Phys.: Condens. Matter 26 055602
[17] Gu T, Tada T and Watanabe S 2010 ACS. Nano. 4 6477
[18] Lu J L, Luo J, Zhao H P, Yang J, Jiang X W, Liu Q, Li X F and Dai Y H 2014 J. Semicond. 35 013001
[19] Sun H T, Liu Q, Li C F, Long S B, Lv H B, Bi C, Huo Z L, Li L and Liu M 2014 Adv. Funct. Mater. 24 5679
[20] Guo X, Schindler C, Menzel S and Waser R 2007 Appl. Phys. Lett. 91 133513
[21] Cabrera E, Olibet S, Glatz-Reichenbach J, Kopecek R, Reinke D and Schubert G 2011 J. Appl. Phys. 110 114511
[22] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[23] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[24] Hann R E, Suitch P R and Pentecost J L 1985 J. Am. Ceram. Soc. 68 C-285
[25] Shűichi N 1984 Mol. Phys. 52 255
[26] Andersen H C 1980 J. Chem. Phys. 72 2384
[27] Delley B 2000 J. Chem. Phys. 113 7756
[28] Zhang J, Liang E J, Sun Q and Jia Y 2012 Chin. Phys. B 21 047201
[29] Govind N, Petersen M, Fitzgerald G, King-Smith D and Andzelm J 2003 Comp. Mater. Sci. 28 250
[30] Khan M S, Islam M S and Bates D R 1998 J. Phys. Chem. B 102 3099
[31] Mulliken R S 1955 J. Chem. Phys. 23 1841
[32] Segall M D, Shah R, Pickard C J and Payne M C 1996 Phys. Rev. B 54 16317
[33] Zhou M Y, Zhao Q, Zhang W, Liu Q and Dai Y H 2012 J. Semicond. 33 072002
[1] Characterization and application in XRF of HfO2-coated glass monocapillary based on atomic layer deposition
Yan-Li Li(李艳丽), Ya-Bing Wang(王亚冰), Wei-Er Lu(卢维尔), Xiang-Dong Kong(孔祥东), Li Han(韩立), and Hui-Bin Zhao(赵慧斌). Chin. Phys. B, 2021, 30(5): 050703.
[2] Comparative study on characteristics of Si-based AlGaN/GaN recessed MIS-HEMTs with HfO2 and Al2O3 gate insulators
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Kai Liu(刘凯), Ang Li(李昂), Yun-Long He(何云龙), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(8): 087304.
[3] Laser-induced damage threshold in HfO2/SiO2 multilayer films irradiated by β-ray
Mei-Hua Fang(方美华), Peng-Yu Tian(田鹏宇), Mao-Dong Zhu(朱茂东), Hong-Ji Qi(齐红基), Tao Fei(费涛), Jin-Peng Lv(吕金鹏), Hui-Ping Liu(刘会平). Chin. Phys. B, 2019, 28(2): 024215.
[4] High uniformity and forming-free ZnO-based transparent RRAM with HfOx inserting layer
Shi-Jian Wu(吴仕剑), Fang Wang(王芳), Zhi-Chao Zhang(张志超), Yi Li(李毅), Ye-Mei Han(韩叶梅), Zheng-Chun Yang(杨正春), Jin-Shi Zhao(赵金石), Kai-Liang Zhang(张楷亮). Chin. Phys. B, 2018, 27(8): 087701.
[5] Improved performance of Au nanocrystal nonvolatile memory by N2-plasma treatment on HfO2 blocking layer
Chen Wang(王尘), Yi-Hong Xu(许怡红), Song-Yan Chen(陈松岩), Cheng Li(李成), Jian-Yuan Wang(汪建元), Wei Huang(黄巍), Hong-Kai Lai(赖虹凯), Rong-Rong Guo(郭榕榕). Chin. Phys. B, 2018, 27(6): 067303.
[6] Structural and electrical properties of reactive magnetron sputtered yttrium-doped HfO2 films
Yu Zhang(张昱), Jun Xu(徐军), Da-Yu Zhou(周大雨), Hang-Hang Wang(王行行), Wen-Qi Lu(陆文琪), Chi-Kyu Choi. Chin. Phys. B, 2018, 27(4): 048103.
[7] Electronic structures and optical properties of HfO2-TiO2 alloys studied by first-principles GGA+ U approach
Jin-Ping Li(李金平), Song-He Meng(孟松鹤), Cheng Yang(杨程), Han-Tao Lu(陆汉涛), Takami Tohyama(遠山貴巳). Chin. Phys. B, 2018, 27(2): 027101.
[8] Thermal stability and data retention of resistive random access memory with HfOx/ZnO double layers
Yun-Feng Lai(赖云锋), Fan Chen(陈凡), Ze-Cun Zeng(曾泽村), Pei-Jie Lin(林培杰), Shu-Ying Cheng(程树英), Jin-Ling Yu(俞金玲). Chin. Phys. B, 2017, 26(8): 087305.
[9] Graphene resistive random memory–the promising memory device in next generation
Xue-Feng Wang(王雪峰), Hai-Ming Zhao(赵海明), Yi Yang(杨轶), Tian-Ling Ren(任天令). Chin. Phys. B, 2017, 26(3): 038501.
[10] Crystallization behaviors of ultrathin Al-doped HfO2 amorphous films grown by atomic layer deposition
Xue-Li Ma(马雪丽), Hong Yang(杨红), Jin-Juan Xiang(项金娟), Xiao-Lei Wang(王晓磊), Wen-Wu Wang(王文武), Jian-Qi Zhang(张建齐), Hua-Xiang Yin(殷华湘), Hui-Long Zhu(朱慧珑), Chao Zhao(赵 超). Chin. Phys. B, 2017, 26(2): 027701.
[11] Thermal effect on endurance performance of 3-dimensional RRAM crossbar array
Nianduan Lu(卢年端), Pengxiao Sun(孙鹏霄), Ling Li(李泠), Qi Liu(刘琦), Shibing Long(龙世兵), Hangbing Lv(吕杭炳), Ming Liu(刘明). Chin. Phys. B, 2016, 25(5): 056501.
[12] Distribution of electron traps in SiO2/HfO2 nMOSFET
Xiao-Hui Hou(侯晓慧), Xue-Feng Zheng(郑雪峰), Ao-Chen Wang(王奥琛), Ying-Zhe Wang(王颖哲), Hao-Yu Wen(文浩宇), Zhi-Jing Liu(刘志镜), Xiao-Wei Li(李小炜), Yin-He Wu(吴银河). Chin. Phys. B, 2016, 25(5): 057702.
[13] Charge transport and bipolar switching mechanismin a Cu/HfO2/Pt resistive switching cell
Tingting Tan(谭婷婷), Tingting Guo(郭婷婷), Zhihui Wu(吴志会), Zhengtang Liu(刘正堂). Chin. Phys. B, 2016, 25(11): 117306.
[14] Self-compliance multilevel storage characteristic in HfO2-based device
Xiao-Ping Gao(高晓平), Li-Ping Fu(傅丽萍), Chuan-Bing Chen(陈传兵), Peng Yuan(袁鹏), Ying-Tao Li(李颖弢). Chin. Phys. B, 2016, 25(10): 106102.
[15] Resistive switching characteristic and uniformity of low-power HfOx-based resistive random access memory with the BN insertion layer
Shuai Su(苏帅), Xiao-Chuan Jian(鉴肖川), Fang Wang(王芳), Ye-Mei Han(韩叶梅), Yu-Xian Tian(田雨仙), Xiao-Yang Wang(王晓旸), Hong-Zhi Zhang(张宏智), Kai-Liang Zhang(张楷亮). Chin. Phys. B, 2016, 25(10): 107302.
No Suggested Reading articles found!