Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 076104    DOI: 10.1088/1674-1056/24/7/076104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Electric field effect in ultrathin zigzag graphene nanoribbons

Zhang Wen-Xing (张文星), Liu Yun-Xiao (刘云霄), Tian Hua (田华), Xu Jun-Wei (许军伟), Feng Lin (冯琳)
Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Physics Department, Taiyuan University of Technology, Taiyuan 030024, China
Abstract  The electric field effect in ultrathin zigzag graphene nanoribbons containing only three or four zigzag carbon chains is studied by first-principles calculations, and the change of conducting mechanism is observed with increasing in-plane electric field perpendicular to the ribbon. Wider zigzag graphene nanoribbons have been predicted to be spin-splitted for both valence band maximum (VBM) and conduction band minimum (CBM) with an applied electric field and become half-metal due to the vanishing band gap of one spin with increasing applied field. The change of VBM for the ultrathin zigzag graphene nanoribbons is similar to that for the wider ones when an electric field is applied. However, in the ultrathin zigzag graphene nanoribbons, there are two kinds of CBMs, one is spin-degenerate and the other is spin-splitted, and both are tunable by the electric field. Moreover, the two CBMs are spatially separated in momentum space. The conducting mechanism changes from spin-degenerate CBM to spin-splitted CBM with increasing applied electric field. Our results are confirmed by density functional calculations with both LDA and GGA functionals, in which the LDA always underestimates the band gap while the GGA normally produces a bigger band gap than the LDA.
Keywords:  electric field      density functional theory      zigzag nanoribbon  
Received:  04 January 2015      Revised:  04 February 2015      Accepted manuscript online: 
PACS:  61.48.Gh (Structure of graphene)  
  73.22.Pr (Electronic structure of graphene)  
  75.70.Ak (Magnetic properties of monolayers and thin films)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204201 and 11147142) and the Natural Science Foundation for Young Scientists of Shanxi Province, China (Grant No. 2013021010-1).
Corresponding Authors:  Zhang Wen-Xing, Liu Yun-Xiao     E-mail:  zhangwenxing@tyut.edu.cn;liuyunxiao0917@link.tyut.edu.cn

Cite this article: 

Zhang Wen-Xing (张文星), Liu Yun-Xiao (刘云霄), Tian Hua (田华), Xu Jun-Wei (许军伟), Feng Lin (冯琳) Electric field effect in ultrathin zigzag graphene nanoribbons 2015 Chin. Phys. B 24 076104

[1] Yazyev O V and Katsnelson M I 2008 Phys. Rev. Lett. 100 047209
[2] Son Y W, Cohen M L and Louie S G 2006 Nature 444 347
[3] Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803
[4] Trauzettel B, Bulaev D V, Loss D and Burkard G 2007 Nat. Phys. 3 192
[5] Wimmer M, Adagideli I, Berber S, Tomànek D and Richter K 2008 Phys. Rev. Lett. 100 177207
[6] Tombros N, Jozsa C, Popinciuc M, Jonkman H T and Van Wees B J 2007 Nature 448 571
[7] Katsnelson M I, Irkhin V Y, Chioncel L, Lichtenstein A I and de Groot R A 2008 Rev. Mod. Phys. 80 315
[8] Yu Z G and Flatté M E 2002 Phys. Rev. B 66 201202
[9] Awschalom D D and Flatté M E 2007 Nat. Phys. 3 153
[10] Kato Y, Myers R, Gossard A and Awschalom D 2004 Nature 427 50
[11] Berger C, Song Z, Li T B, Li X B, Ogbazghi A Y, Feng R, Dai Z T, Marchenkov A N, Conrad E H, First P N and de Heer W A 2004 J. Phys. Chem. B 108 19912
[12] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[13] Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[14] Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N and de Heer W A 2006 Science 312 1191
[15] Huang Q S, Guo L W, Wang W J, Wang G, Wang W Y, Jia Y P, Lin J J, Li K and Chen X L 2010 Chin. Phys. Lett. 27 046803
[16] Guo X S, Lu B A and Xie E Q 2011 Chin. Phys. Lett. 28 076803
[17] Deng P F, Lei T M, Lu J J, Liu F Y, Zhang Y M, Guo H, Zhang Y M, Wang Y H and Tang X Y 2013 Chin. Phys. Lett. 30 018101
[18] Ezawa M 2012 Phys. Rev. Lett. 109 055502
[19] Saari T, Huang C Y, Nieminen J, Tsai W F, Lin H and Bansil A 2014 Appl. Phys. Lett. 104 173104
[20] Ding Y and Wang Y L 2014 Appl. Phys. Lett. 104 083111
[21] Pang Q, Zhang Y, Zhang J M, Ji V and Xu K W 2011 Nanoscale 3 4330
[22] Tabert C J and Nicol E J 2013 Phys. Rev. B 87 235426
[23] Wagner P, Ivanovskaya V V, Melle-Franco M, Humbert B, Adjizian J J, Briddon P R and Ewels C P 2013 Phys. Rev. B 88 094106
[24] Seitsonen A P, Saitta A M, Wassmann T, Lazzeri M and Mauri F 2010 Phys. Rev. B 82 115425
[25] Cervantes-Sodi F, Csanyi G, Piscanec S and Ferrari A C 2008 Phys. Rev. B 77 165427
[26] Wang M and Li C M 2013 Phys. Chem. Chem. Phys. 15 3786
[27] Derakhshan V and Cheraghchi H 2014 J. Magn. Magn. Mater. 357 29
[28] Wu X J and Zeng X C 2008 Nano Res. 1 40
[29] Dias J R 2008 Chem. Phys. Lett. 467 200
[30] Dong Y J, Wang X F, Yang S W and Wu X M 2014 Sci. Rep. 4 6157
[31] Li Y F, Zhou Z, Shen P W and Chen Z F 2009 ACS Nano 3 1952
[32] Wang Z Y, Hu H F, Gu L, Wang W and Jia J F 2011 Acta Phys. Sin. 60 017102 (in Chinese)
[33] Lu P, Zhang Z H and Guo W L 2009 Phys. Lett. A 373 3354
[34] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[35] Hamann D R, Schlüter M and Chiang C 1979 Phys. Rev. Lett. 43 1494
[36] Li Z Y, Qian H Y, Wu J, Gu B L and Duan W H 2008 Phys. Rev. Lett. 100 206802
[37] Zhang G P and Qin Z J 2010 Phys. Lett. A 374 4140
[38] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[10] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[11] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[12] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[13] Electron beam modeling and analyses of the electric field distribution and space charge effect
Yueling Jiang(蒋越凌) and Quanlin Dong(董全林). Chin. Phys. B, 2022, 31(5): 054103.
[14] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[15] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
No Suggested Reading articles found!