CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
The influence of phonon bath on the control of single photon |
Zhang Wei (张威), Lu Hai-Tao (芦海涛) |
Institute of Super-Microstructure and Ultrafast Process in Advanced Materials,School of Physics and Electronics, Central South University, Changsha 410012, China |
|
|
Abstract The influence of vacuum fluctuation and phonon bath on the probability of single photon emission are both considered in the two-level system model theoretically; by using the master equations and generating function method we get the analytical expression of the second-order fluorescence correlation function, probability of single photon emission, and Mandel's Q parameter. The results manifest that the coupling between the phonon bath and single photon source destroys the superposition state induced by the square laser pulse, the Rabi oscillation damped rapidly with the increasing of temperature. Theoretically, when the structure parameter of arsenide quantum dots α scaled to 0.1 times of the sample, the critical coherence-temperature will rise up to hundreds of Kelvin, which means a step forward to the realization of coherent control of single photon source at room temperature.
|
Received: 16 October 2014
Revised: 24 December 2014
Accepted manuscript online:
|
PACS:
|
78.67.Hc
|
(Quantum dots)
|
|
42.50.-p
|
(Quantum optics)
|
|
42.50.Ct
|
(Quantum description of interaction of light and matter; related experiments)
|
|
42.50.Lc
|
(Quantum fluctuations, quantum noise, and quantum jumps)
|
|
Fund: Project supported by the Fundamental Research Funds for the Central Universities of Central South University, China (Grant No. 2014zzts145). |
Corresponding Authors:
Zhang Wei
E-mail: zhangweidoit@163.com
|
About author: 78.67.Hc; 42.50.-p; 42.50.Ct; 42.50.Lc |
Cite this article:
Zhang Wei (张威), Lu Hai-Tao (芦海涛) The influence of phonon bath on the control of single photon 2015 Chin. Phys. B 24 067806
|
[1] |
Quiroga L and Johnson N F 1999 Phys. Rev. Lett. 83 2270
|
[2] |
Biolatti E, Iotti R C, Zanardi P and Rossi F 2000 Phys. Rev. Lett. 85 26
|
[3] |
Huang W Q, Miao X J, Huang Z M, Liu S R and Qin C J 2012 Chin. Phys. B 21 094207
|
[4] |
Liu J, Wang Q, Kuang L M and Zeng H S 2010 Chin. Phys. B 19 030313
|
[5] |
Niu Z C, Sun B Q, Dou X M, Xiong Y H, Wang H L, Ni H Q, Li S S and Xia J B 2010 Physics 39 737 (in Chinses)
|
[6] |
Li Z G, Liu G J, Li L, Feng M, Li M, Lu P, Zou Y G, Li L H and Gao X 2010 Chin. Phys. Lett. 27 126801
|
[7] |
He Y and Barkai E 2006 Phys. Rev. A 74 011803
|
[8] |
He Y and Barkai E 2006 Phys. Chem. Chem. Phys. 8 5056
|
[9] |
Zheng Y J and Brown F L H 2003 Phys. Rev. Lett. 90 238305
|
[10] |
Qiu L, Zhang K and Li Z Y 2013 Chin. Phys. B 22 094207
|
[11] |
Garraway B M 1997 Phys. Rev. A 55 2290
|
[12] |
Lidar D A, Chuang I L and Whaley K B 1998 Phys. Rev. Lett. 81 2594
|
[13] |
Santori C, Pelton M, Solomon G, Dale Y and Yamamoto Y 2001 Phys. Rev. Lett. 86 1502
|
[14] |
Brunel C, Lounis B, Tamarat P, and Orrit M 1999 Phys. Rev. Lett. 83 2722
|
[15] |
Lounis B and Moerner W E 2000 Nature 407 491
|
[16] |
Moerner W E 2004 New J. Phys. 6 88
|
[17] |
Gaebel T, Popa I, Gruber A, Domhan M, Jelezko F and Wrachtrup J 2004 New. J. Phys. 6 98
|
[18] |
Wu E, Rabeau J R, Roger G, Treussart F, Zeng H, Grangier P, Prawer S and Roch J F 2007 New. J. Phys. 9 434
|
[19] |
Aharonovich I, Castelletto S, Simpson D A, Su C H, Greentree A D and Prawer S 2011 Rep. Prog. Phys. 74 076501
|
[20] |
Förstner J, Weber C, Danckwerts J and Knorr A 2003 Phys. Rev. Lett. 91 127401
|
[21] |
Borri P, Langbein W, Woggon U, Stavarache V, Reuter D and Wieck A D 2005 Phys. Rev. B 71 115328
|
[22] |
Krummheuer B, Axt V M and Kuhn T 2002 Phys. Rev. B 65 195313
|
[23] |
Jacak L, Machnikowski P, Krasnyj K and Zoller P 2003 Eur. Phys. J. D 22 319
|
[24] |
Wang W S, Zhang M L and Che Zhi D 2014 Chin. Phys. B 23 094205
|
[25] |
Leggett A J, Chakravarty S, Dorsey A T, Fisher M P A, Garg A and Zwerger W 1987 Rev. Mod. Phys. 59 1
|
[26] |
Nazir A 2008 Phys. Rev. B 78 153309
|
[27] |
Ramsay A J, Gopal A V, Gauger E M, Nazir A, Lovett B W, Fox A M and Skolnick S M 2010 Phys. Rev. Lett. 104 017402
|
[28] |
Rodriguez F J, Quiroga L and Johnson N F 2002 Phys. Rev. B 66 161302
|
[29] |
Carmichael H 1993 An Open Systems Approach to Quantum Optics (Berlin/Heidelberg: Springer-Verlag) p. 32
|
[30] |
Loudon R 2000 The Quantum Theory of Light, 3rd edn. (New York: Oxford Uiniversity Press) p. 333
|
[31] |
Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (New York: Cambridge University Press) p. 860
|
[32] |
Wang C L 2007 "A Solid-State Single Photon Source Based on Color Centers in Diamond", Ph. D. Dissertation (München: Department of Physics at the Ludwig-Maximilians-Universität)
|
[33] |
Cook R J 1981 Phys. Rev. A 23 1243
|
[34] |
Flagg E B, Muller A, Robertson J W, Founta S, Deppe D G, Xiao M, Ma W, Salamo G J and Shih C K 2009 Nat. Phys. 5 203
|
[35] |
Kiraz A, Atature M and Imamoglu A 2004 Phys. Rev. A 69 032305
|
[36] |
Carmichael H 1993 An Open Systems Approach to Quantum Optics (Berlin/Heidelberg: Springer-Verlag) p. 36
|
[37] |
Tannoudji C C, Roc J D and Grynberg G 2004 Atom-Photon Interaction: Basic Processes and Applications (Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA) p. 283
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|