Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 054302    DOI: 10.1088/1674-1056/24/5/054302
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Flow aeroacoustic damping using coupled mechanical–electrical impedance in lined pipeline

Chen Yong (陈勇)a, Huang Yi-Yong (黄奕勇)a, Chen Xiao-Qian (陈小前)a, Bai Yu-Zhu (白玉铸)b, Tan Xiao-Dong (谭晓栋)b
a College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China;
b Department of Electronic Technology, Officer's College of CAPF, Chengdu 610213, China
Abstract  We report a new noise-damping concept which utilizes a coupled mechanical–electrical acoustic impedance to attenuate an aeroacoustic wave propagating in a moving gas confined by a cylindrical pipeline. An electrical damper is incorporated to the mechanical impedance, either through the piezoelectric, electrostatic, or electro-magnetic principles. Our numerical study shows the advantage of the proposed methodology on wave attenuation. With the development of the micro-electro-mechanical system and material engineering, the proposed configuration may be promising for noise reduction.
Keywords:  aeroacoustics      mechanical–electrical impedance      wave propagation      uniform flow  
Received:  12 August 2014      Revised:  24 November 2014      Accepted manuscript online: 
PACS:  43.28.Bj (Mechanisms affecting sound propagation in air, sound speed in the air)  
  43.28.Py (Interaction of fluid motion and sound, Doppler effect, and sound in flow ducts)  
  43.50.Nm (Aerodynamic and jet noise)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11404405, 91216201, 51205403, and 11302253).
Corresponding Authors:  Chen Yong     E-mail:  literature.chen@gmail.com
About author:  43.28.Bj; 43.28.Py; 43.50.Nm

Cite this article: 

Chen Yong (陈勇), Huang Yi-Yong (黄奕勇), Chen Xiao-Qian (陈小前), Bai Yu-Zhu (白玉铸), Tan Xiao-Dong (谭晓栋) Flow aeroacoustic damping using coupled mechanical–electrical impedance in lined pipeline 2015 Chin. Phys. B 24 054302

[1] Astley R J and Gabard G 2011 J. Sound Vib. 330 3785
[2] Peat K S 1994 J. Sound Vib. 175 475
[3] Lawrie J B 2009 Proc. R. Soc. Lond. A 465 2347
[4] Rienstra S W and Hirschberg A 2013 Report No. IWDE 92-06
[5] Liang P N and Scarton H A 1996 J. Sound Vib. 193 1099
[6] Brambley E J and Peake N 2006 Wave Motion 43 301
[7] Twiefel J and Westermann H 2013 J. Intell. Mat. Syst. Str.
[8] Zhang W Y, Li Y L, Chang X Y and Wang N 2013 Chin. Phys. B 22 098401
[9] Li P 2009 Chin. Phys. B 18 4769
[10] Fan K Q, Ming Z F, Xu C H and Chao F B 2013 Chin. Phys. B 22 104502
[11] Renno J, Daqaq M F and Inman D J 2009 J. Sound Vib. 320 386
[12] Barrero-Gil A, Pindado S and Avila S 2012 Appl. Math. Model. 36 3153
[13] Chen Q M and Wang Q M 2005 Appl. Phys. Lett. 86 022904
[14] Wang X D, Song J H, Liu J and Wang Z L 2007 Science 316 102
[15] Yang R, Qin Y, Da L M and Wang Z L 2008 Nat. Nanotech. 4 34
[16] Liu S, Zhao S S, Sun B P and Zhang W M 2014 Chin. Phys. B 23 094501
[17] Wang D A, Chiu C Y and Pham H T 2012 Mechatronics 22 746
[18] Yu G L, Li Y X, Zeng Y Q, Li J, Zuo L, Li Q and Zhang H W 2013 Chin. Phys. B 22 077504
[19] Fan K Q, Xu C H, Wang W D and Fang Y 2014 Chin. Phys. B 23 084501
[20] Chen J, Zhu G, Yang W Q, Jing Q S, Bai P, Yang Y, Hou T C and Wang Z L 2013 Adv. Mater. 25 6094
[21] Le C P and Halvorsen E 2012 J. Micromech. Microeng. 22 074013
[22] Yang W Q, Chen J, Zhu G, Wen X N, Bai P, Su Y J, Lin Y and Wang Z L 2013 Nano Research 3 211
[23] Chen J, Liu Y, Yang W Q, Su Y J and Wang Z L 2014 ACS Nano 8 2649
[24] Lissek H, Boulandet R and Fleury R 2011 J. Acoust. Soc. Am. 129 2968
[25] Chang D Q, Liu B L and Li X D 2010 J. Acoust. Soc. Am. 128 623
[26] Betgen B and Galland M A 2011 Mech. Syst. Sign. Proc. 25 1715
[27] Liu F, Horowitz S, Nishid T, Cattafesta L and Sheplakb M 2007 J. Acoust. Soc. Am. 122 291
[28] Brambley E J 2011 AIAA J. 49 1272
[29] Knutsson M and Abom M 2010 J. Sound Vib. 329 4719
[30] Brambley E J, Davis A M J and Peake N 2012 J. Fluid Mech. 690 399
[31] Richter C 2009 Liner Impedance Modeling in the Time Domain with Flow (Doctor dissertation) (Berlin: Berlin University of Technology)
[32] Alonso J S and Burdisso R A 2007 AIAA J. 45 2677
[33] Brambley E J 2009 J. Sound Vib. 322 1026
[34] Rienstra S W and Darau M 2011 J. Fluid Mech. 671 559
[1] Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄). Chin. Phys. B, 2023, 32(1): 014301.
[2] Fast prediction of aerodynamic noise induced by the flow around a cylinder based on deep neural network
Hai-Yang Meng(孟海洋), Zi-Xiang Xu(徐自翔), Jing Yang(杨京), Bin Liang(梁彬), and Jian-Chun Cheng(程建春). Chin. Phys. B, 2022, 31(6): 064305.
[3] Long range electromagnetic field nature of nerve signal propagation in myelinated axons
Qing-Wei Zhai(翟卿伟), Kelvin J A Ooi(黄健安), Sheng-Yong Xu(许胜勇), and C K Ong(翁宗经). Chin. Phys. B, 2022, 31(3): 038701.
[4] In situ measurement on nonuniform velocity distributionin external detonation exhaust flow by analysis ofspectrum features using TDLAS
Xiao-Long Huang(黄孝龙), Ning Li(李宁), Chun-Sheng Weng(翁春生), and Yang Kang(康杨). Chin. Phys. B, 2022, 31(1): 014703.
[5] Photonic crystal structures: Beam deflector and beam router
Utku Erdiven, Erkan Tetik, Faruk Karadag. Chin. Phys. B, 2018, 27(4): 044204.
[6] (3+1)-dimensional localized self-accelerating Airy elegant Ince-Gaussian wave packets and their radiation forces in free space
Dongdong Li(李冬冬), Xi Peng(彭喜), Yulian Peng(彭玉莲), Liping Zhang(张丽萍), Xingyu Chen(陈星宇), Jingli Zhuang(庄经立), Fang Zhao(赵方), Xiangbo Yang(杨湘波), Dongmei Deng(邓冬梅). Chin. Phys. B, 2017, 26(12): 124202.
[7] Generalized collar waves in acoustic logging while drilling
Xiu-Ming Wang(王秀明), Xiao He(何晓), Xiu-Mei Zhang(张秀梅). Chin. Phys. B, 2016, 25(12): 124316.
[8] Beam propagation method for wide-fieldnonlinear wave mixing microscope
Lv Yong-Gang (吕永钢), Ji Zi-Heng (纪子衡), Yu Wen-Tao (于文韬), Shi Ke-Bin (施可彬). Chin. Phys. B, 2015, 24(9): 094211.
[9] Influence of obstacle on electromagnetic wave propagation in evaporation duct with experiment verification
Shi Yang (史阳), Yang Kun-De (杨坤德), Yang Yi-Xin (杨益新), Ma Yuan-Liang (马远良). Chin. Phys. B, 2015, 24(5): 054101.
[10] Axisymmetric wave propagation in gas shear flow confined by a rigid-walled pipeline
Chen Yong (陈勇), Huang Yi-Yong (黄奕勇), Chen Xiao-Qian (陈小前), Bai Yu-Zhu (白玉铸), Tan Xiao-Dong (谭晓栋). Chin. Phys. B, 2015, 24(4): 044301.
[11] Experimental verification of effect of horizontal inhomogeneity of evaporation duct on electromagnetic wave propagation
Shi Yang (史阳), Yang Kun-De (杨坤德), Yang Yi-Xin (杨益新), Ma Yuan-Liang (马远良). Chin. Phys. B, 2015, 24(4): 044102.
[12] Controlling an acoustic wave with a cylindrically-symmetric gradient-index system
Zhang Zhe (张哲), Li Rui-Qi (李睿奇), Liang Bin (梁彬), Zou Xin-Ye (邹欣晔), Cheng Jian-Chun (程建春). Chin. Phys. B, 2015, 24(2): 024301.
[13] Role of the aperture in Z-scan experiments: A parametric study
M. R. Rashidian Vaziri. Chin. Phys. B, 2015, 24(11): 114206.
[14] Effect of far-field flow on a columnar crystal in the convective undercooled melt
Ji Xiao-Jian (姬小建), Chen Ming-Wen (陈明文), Xu Xiao-Hua (徐小花), Wang Zi-Dong (王自东). Chin. Phys. B, 2015, 24(1): 016401.
[15] Optical properties of the electromagnetic waves propagating in an elliptical cylinder multilayer structure
A. Abdoli-Arani. Chin. Phys. B, 2014, 23(3): 034211.
No Suggested Reading articles found!