Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 094202    DOI: 10.1088/1674-1056/24/9/094202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Distribution characteristics of intensity and phase vortices of speckle fields produced by N-pinhole random screens

Liu Man (刘曼)a b, Cheng Chuan-Fu (程传福)b, Ren Xiao-Rong (任晓荣)b
a School of Science, Qilu University of Technology, Jinan 250353, China;
b College of Physics and Electronics, Shandong Normal University, Jinan 250014, China
Abstract  

We analyze the distribution properties of phase and phase vortices in a speckle field generated by N-pinhole random screens, and find that the phase vortex distributions show similarity and clustering in local regions. The phase patterns have a lot of sets composed of two phase vortices with opposite signs or four phase vortices which are positive and negative vortices alternately. Cases are also found where two adjacent phase vortices have the same topological charges. The density of phase vortices becomes larger with the increase of the radius of circumference and the number of pinholes on screen. Then, the relative positions of phase vortices can be adjusted by changing the radius of circumference and the number of pinholes.

Keywords:  speckle field      phase vortices      intensity distribution  
Received:  22 October 2014      Revised:  02 April 2015      Accepted manuscript online: 
PACS:  42.25.Fx (Diffraction and scattering)  
  42.30.Ms (Speckle and moiré patterns)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11404179).

Corresponding Authors:  Liu Man, Cheng Chuan-Fu     E-mail:  lium7879@163.com;chengchuanfu@sdnu.edu.cn

Cite this article: 

Liu Man (刘曼), Cheng Chuan-Fu (程传福), Ren Xiao-Rong (任晓荣) Distribution characteristics of intensity and phase vortices of speckle fields produced by N-pinhole random screens 2015 Chin. Phys. B 24 094202

[1] Goodman J W 2006 Speckle Phenomena in Optics: Theory and Applications (Ben Roberts & Company)
[2] Duffy D E 1972 Appl. Opt. 11 1787
[3] Chiang F P and Khetan R P 1979 Appl. Opt. 18 2175
[4] Uno K, Uozumi J and Asakura T 1995 Opt. Commun. 114 203
[5] Ibrahim M, Uozumi J and Asakura T 1997 Optik 106 33
[6] Angel L, Tebaldi M, Trivi M and Bolognini N 2001 Opt. Commun. 192 37
[7] Lencina A, Tebaldi M, Vaveliuk P and Bolognini N 2007 Waves Random Complex. 17 29
[8] Angel L, Tebaldi M and Bolognini N 2007 Opt. Commun. 274 23
[9] Lencina A, Solano P, Staforelli J P, Brito J M, Tebaldi M and Bolognini N 2012 Opt. Express. 20 19
[10] Mosso E, Tebaldi M, Lencina A and Bolognini N 2010 Opt. Commun. 283 1285
[11] Staforelli J P, Brito J M, Vera E, Solano P and Lencina A 2010 Opt. Commun. 283 4722
[12] Nye J F and Berry M V 1974 Proc. R. Soc. Lond. A Math. Phys. Sci. 336 165
[13] Boiron D, Mennerat-Robilliard C, Fournier J M, Guidoni L, Salomon C and Grynberg G 1999 Eur. Phys. J. D 7 373
[14] Grynberg G, Horak P and Mennerat-Robilliard C 2000 Europhys. Lett. 49 424
[15] Gregorius C G B and Marco W B 2010 Opt. Express. 18 13836
[16] Chen X Y, Li Zh H, Li H X, Zhang M N and Cheng Ch F 2012 Opt. Express. 20 17833
[17] Zhang S, Hu B, Sebbah P and Genack A Z 2007 Phys. Rev. Lett. 99 063902
[18] Zhang S and Genack A Z 2007 Phys. Rev. Lett. 99 203901
[19] Liu C X, Liang G T, Zhang M N, Li Z H and Cheng C F 2014 Chin. Phys. Lett. 31 057306
[20] Liu J D, Song F, Zhang J, Liu S J, Wang F X and Wang L C 2014 Chin. Phys. B 23 084206
[21] Liu W, Andrey E M and Yuri S K 2014 Chin. Phys. B 23 047806
[22] Shvartsman N and Freund I 1994 Phys. Rev. Lett. 72 1008
[23] Freund I 1994 J. Opt. Soc. Am. A 11 1644
[24] Wang W, Hanson S G, Miyamoto Y and Takeda M 2005 Phys. Rev. Lett. 94 103902
[25] Goodman J W 2011 Introduction to Fourier Optics (3rd Edn.) (Beijing: Publishing House of Electronics Industry) (in Chinese)
[26] Berry M V and Dennis M 2000 Proc. R. Soc. Lond. A 456 2059
[27] Freund I, Shvartsman N and Freilikher V 1993 Opt. Commun. 101 247
[1] Internal and near-surface fields for a chiral sphere under arbitrary laser beam illumination
Bi-Da Su(苏必达), Ming-Jun Wang(王明军), Yue Peng(彭月), Su-Hui Yang(杨苏辉), Hua-Yong Zhang(张华永). Chin. Phys. B, 2019, 28(6): 064210.
[2] In-line phase contrast for weakly absorbing materials with a microfocus x-ray source
Zhang Di(章迪), Li Zheng(李政), Huang Zhi-Feng(黄志峰), Yu Ai-Min(禹爱民), and Sha Wei(沙薇). Chin. Phys. B, 2006, 15(8): 1731-1737.
No Suggested Reading articles found!