ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
1.12-W Q-switched Yb:KGW laser based on transmission-type Bi2Se3 saturable absorber |
Liu Jing-Hui (刘京徽)a, Tian Jin-Rong (田金荣)a, Hu Meng-Ting (胡梦婷)a, Xu Run-Qin (徐润亲)a, Dou Zhi-Yuan (窦志远)a, Yu Zhen-Hua (于振华)b, Song Yan-Rong (宋晏蓉)a |
a College of Applied Sciences, Beijing University of Technology, Beijing 100124, China; b Tianjin Institute of Modern Laser Optics Technology, Tianjin 300190, China |
|
|
Abstract We present a passively Q-switched Yb:KGW laser based on a transmission-type saturable absorber of topological insulator: Bi2Se3. The saturable absorber is prepared on a 0.17-mm glass substrate and can translate intra-cavity for best performance nearly without influence on the laser mode. At a maximum pump power of 13.7 W, the central wavelength, pulse duration, repetition rate, and pulse energy of Q-switched pulse are 1043 nm, 1.5 μs, 175.4 kHz, 6.39 μJ, respectively. The maximum output power is 1.12 W. To our knowledge, this is the highest average output power from passively Q-switched lasers with topological insulator saturable absorbers.
|
Received: 21 August 2014
Revised: 30 August 2014
Accepted manuscript online:
|
PACS:
|
42.60.Gd
|
(Q-switching)
|
|
42.70.Hj
|
(Laser materials)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB922404), the National Natural Science Foundation of China (Grant No. 61177047), and the Beijing Municipal Education Commission Project, China (Grant No. KM201010005007). |
Corresponding Authors:
Tian Jin-Rong, Song Yan-Rong
E-mail: jrtian@bjut.edu.cn;yrsong@bjut.edu.cn
|
Cite this article:
Liu Jing-Hui (刘京徽), Tian Jin-Rong (田金荣), Hu Meng-Ting (胡梦婷), Xu Run-Qin (徐润亲), Dou Zhi-Yuan (窦志远), Yu Zhen-Hua (于振华), Song Yan-Rong (宋晏蓉) 1.12-W Q-switched Yb:KGW laser based on transmission-type Bi2Se3 saturable absorber 2015 Chin. Phys. B 24 024215
|
[1] |
Klopp P, Petrov V and Griebner U 2002 Opt. Express 10 108
|
[2] |
Kuleshov N V, Lagatsky A A, Podlipensky A V, Mikhailov V P 1997 Opt. Lett. 22 1317
|
[3] |
Brunner F, Spühler G J, Au J A, Krauner L, Morier-Genoud F, Paschotta R, Lichtenstein N, Weiss S, Harder C, Lagatsky A A, Abdolvand A, Kuleshov N V and Keller U 2000 Opt. Lett. 25 1119
|
[4] |
Berger J A, Greco M J and Schroeder W A 2008 Opt. Express 16 8629
|
[5] |
Major A, Cisek Sandkuijl R D and Barzda V 2009 Laser Phys. Lett. 6 272
|
[6] |
Li J F, Liang X Y, He J P and Lin H 2011 Chin. Opt. Lett. 9 071406
|
[7] |
Holtom G R 2006 Opt. Lett. 31 2719
|
[8] |
Pekarek S, Klenner A, Sudmeyer T, Feibig C, Paschke K, Erbert G and Keller U 2012 Opt. Express 20 4248
|
[9] |
Zhao H T and Major A 2013 Opt. Express 21 31846
|
[10] |
Fan Y X, He J L, Wang Y G, Liu S, Wang H T and Ma X Y 2005 Appl. Phys. Lett. 86 101103
|
[11] |
Zhu J F, Tian J R, Wang P, Ling W J, Li D H and Wei Z Y 2006 Chin. Phys. 15 2022
|
[12] |
Popa D, Sun Z, Hasan T, Cho W B, Wang F, Torrisi F and Ferrari A C 2012 Appl. Phys. Lett. 101 153107
|
[13] |
Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611
|
[14] |
Yang J M, Yang Q, Liu J, Wang Y G and Yuen H T 2013 Chin. Phys. B 22 094210
|
[15] |
Cui Y and Liu X 2013 Opt. Express 21 18969
|
[16] |
Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
|
[17] |
Zhao C J, Zhang H, Qi X, Chen Y, Wang Z T, Wen S C and Tang D Y 2012 Appl. Phys. Lett. 101 211106
|
[18] |
Liu M, Zhao N, Liu H, Zheng X W, Luo A P, Luo Z C, Xu W C, Zhao C J, Zhang H and Wen S C 2014 IEEE Photon. Technol. Lett. 26 983
|
[19] |
Sotor J, Sobon G and Abramski K M 2014 Opt. Express 22 13244
|
[20] |
Lee J, Koo J, Jhon Y M and Lee J H 2014 Opt. Express 22 6165
|
[21] |
Chen Y, Zhao C J, Huang H H, Chen S Q, Tang P H, Wang Z T, Lu S B, Zhang H, Wen S C and Tang D Y 2013 J. Lightwave Technol. 31 2857
|
[22] |
Luo Z L, Huang Y Z, Weng J, Cheng H H, Lin Z Q, Xu B, Cai Z P and Xu H Y 2013 Opt. Express 21 29516
|
[23] |
Tang P H, Zhang X Q, Zhao C J, Wang Y, Zhang H, Shen D Y, Wen S C, Tang D Y and Fan D Y 2013 IEEE Photon. J. 5 1500707
|
[24] |
Yu H H, Zhang H, Wang Y C, Zhao C J, Wang B L, Wen S C, Zhang H J and Wang J Y 2013 Laser Photon. Rev. 7 L77
|
[25] |
Zhang J, Peng Z, Soni A, Zhao Y, Xiong Y, Peng B, Wang J, Dresselhaus M S and Xiong Q 2011 Nano Lett. 11 2407
|
[26] |
Yu Z H, Song Y R, Tian J R, Dou Z Y, Guoyu H Y, Li K X, Li H W and Zhang X P 2014 Opt. Express 22 11508
|
[27] |
Liu X 2010 Phys. Rev. A 81 023811
|
[28] |
Liu X, Han D, Sun Z, Zeng C, Lu H, Mao D, Cui Y and Wang F 2013 Sci. Rep. 3 2718
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|