Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 040207    DOI: 10.1088/1674-1056/22/4/040207
GENERAL Prev   Next  

The extended cubic B-spline algorithm for a modified regularized long wave equation

İ. Dağa, D. Irka, M. Sarıb
a Faculty of Science and Arts, Department of Mathematics and Computer Sciences, Eski?ehir Osmangazi Üniversitesi, Eski?ehir, Turkey;
b Faculty of Science and Arts, Department of Mathematics, Pamukkale Üniversitesi, Denizli, Turkey
Abstract  A collocation method based on an extended cubic B-spline functions is introduced for the numerical solution of the modified regularized long wave equation. Accuracy of the method is illustrated by studying the single solitary wave propogation and interaction of two solitary waves of the modified regularized long wave equation.
Keywords:  collocation methods      solitary waves  
Received:  14 September 2012      Revised:  16 November 2012      Accepted manuscript online: 
PACS:  02.70.Jn (Collocation methods)  
  47.35.Fg (Solitary waves)  
Corresponding Authors:  İ. Dağ     E-mail:  idag@ogu.edu.tr

Cite this article: 

İ. Dağ, D. Irk, M. Sarı The extended cubic B-spline algorithm for a modified regularized long wave equation 2013 Chin. Phys. B 22 040207

[1] Khalifa A K, Raslan K R and Alzubaidi H M 2007 Appl. Math. Comput. 189 346
[2] Dereli Y 2010 Numer. Meth. Part. D. E 28 235
[3] Mokhtari R and Mohammadi M 2010 Comput. Phys. Commun. 181 1266
[4] Khalif A K, Raslan K R and Alzubaidi H M 2008 J. Comput. Appl. Math. 212 406
[5] Raslan K R and Hassan S M 2009 Appl. Math. Lett. 22 984
[6] Raslan K R 2009 Chaos, Solitons and Fractals 42 1845
[7] Haq F, Islam S and Tirmizi I A 2010 Appl. Math. Model. 34 4151
[8] Han X L and Liu S J 2003 Journal of Computatinal Aided Design and Computer Graphics 15 576 (in Chinese)
[9] Xu G and Wang G Z 2008 Acta Automatica Sinica 34 980
[10] Hamid N N Abd, Majid A Abd and İsmail A İ 2011 Sains Malays. 40 1285
[11] Hamid N N A, Masalahi A A and İsmail A I M 2010 World Academy of Science, Engineering and Technology 62 566
[12] Goh J, Majid A Abd and İsmail A I 2010 World Academy of Science, Engineering and Technology 70 858
[13] Goh J, Majid A Abd and İsmail A I 2011 Science Asia 37 79
[14] Prenter P M 1989 Splines and Variational Methods (New York: John Wiley & Sons) p. 78
[1] Particle-in-cell simulation of ion-acoustic solitary waves in a bounded plasma
Lin Wei(位琳), Bo Liu(刘博), Fang-Ping Wang(王芳平), Heng Zhang(张恒), and Wen-Shan Duan(段文山). Chin. Phys. B, 2021, 30(3): 035201.
[2] Head-on collision between two solitary waves in a one-dimensional bead chain
Fu-Gang Wang(王扶刚), Yang-Yang Yang(杨阳阳), Juan-Fang Han(韩娟芳), Wen-Shan Duan(段文山). Chin. Phys. B, 2018, 27(4): 044501.
[3] Nucleus-acoustic solitary waves in self-gravitating degenerate quantum plasmas
D M S Zaman, M Amina, P R Dip, A A Mamun. Chin. Phys. B, 2018, 27(4): 040402.
[4] Solitary wave for a nonintegrable discrete nonlinear Schrödinger equation in nonlinear optical waveguide arrays
Li-Yuan Ma(马立媛), Jia-Liang Ji(季佳梁), Zong-Wei Xu(徐宗玮), Zuo-Nong Zhu(朱佐农). Chin. Phys. B, 2018, 27(3): 030201.
[5] Simulations of solitary waves of RLW equation by exponential B-spline Galerkin method
Melis Zorsahin Gorgulu, Idris Dag, Dursun Irk. Chin. Phys. B, 2017, 26(8): 080202.
[6] Quasi-periodic solutions and asymptotic properties for the nonlocal Boussinesq equation
Zhen Wang(王振), Yupeng Qin(秦玉鹏), Li Zou(邹丽). Chin. Phys. B, 2017, 26(5): 050504.
[7] (2+1)-dimensional dissipation nonlinear Schrödinger equation for envelope Rossby solitary waves and chirp effect
Jin-Yuan Li(李近元), Nian-Qiao Fang(方念乔), Ji Zhang(张吉), Yu-Long Xue(薛玉龙), Xue-Mu Wang(王雪木), Xiao-Bo Yuan(袁晓博). Chin. Phys. B, 2016, 25(4): 040202.
[8] A new model for algebraic Rossby solitary waves in rotation fluid and its solution
Chen Yao-Deng (陈耀登), Yang Hong-Wei (杨红卫), Gao Yu-Fang (高玉芳), Yin Bao-Shu (尹宝树), Feng Xing-Ru (冯兴如). Chin. Phys. B, 2015, 24(9): 090205.
[9] Exponential B-spline collocation method for numerical solution of the generalized regularized long wave equation
Reza Mohammadi. Chin. Phys. B, 2015, 24(5): 050206.
[10] Complex dynamical behaviors of compact solitary waves in the perturbed mKdV equation
Yin Jiu-Li (殷久利), Xing Qian-Qian (邢倩倩), Tian Li-Xin (田立新). Chin. Phys. B, 2014, 23(8): 080201.
[11] Exact solutions of the nonlinear differential—difference equations associated with the nonlinear electrical transmission line through a variable-coefficient discrete (G'/G)-expansion method
Saïdou Abdoulkary, Alidou Mohamadou, Ousmanou Dafounansou, Serge Yamigno Doka. Chin. Phys. B, 2014, 23(12): 120506.
[12] New exact solutions of (3+1)-dimensional Jimbo-Miwa system
Chen Yuan-Ming (陈元明), Ma Song-Hua (马松华), Ma Zheng-Yi (马正义). Chin. Phys. B, 2013, 22(5): 050510.
[13] Effects of dust size distribution on nonlinear waves in a dusty plasma
Chen Jian-Hong(陈建宏). Chin. Phys. B, 2009, 18(6): 2121-2128.
[14] Effect of dust charge variation on dust-acoustic solitary waves in a magnetized two-ion-temperature dusty plasma
Xue Ju-Kui (薛具奎), Lang He (郎和). Chin. Phys. B, 2003, 12(5): 538-541.
[15] Bifurcation and solitary waves of the nonlinear wave equation with quartic polynomial potential
Hua Cun-Cai (化存才), Liu Yan-Zhu (刘延柱). Chin. Phys. B, 2002, 11(6): 547-552.
No Suggested Reading articles found!