Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 117503    DOI: 10.1088/1674-1056/23/11/117503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Self-biased magnetoelectric responses in magnetostrictive/piezoelectric composites with different high-permeability alloys

Lu Cai-Jiang (鲁彩江), Li Ping (李平), Wen Yu-Mei (文玉梅), Yang Ai-Chao (杨爱超), Yang Chao (杨超), Wang De-Cai (王德才), He Wei (何伟), Zhang Ji-Tao (张吉涛)
Research Center of Sensors and Instruments, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
Abstract  

We comparatively investigate the influence of various high-permeability alloys on the hysteretic and remanent resonant magnetoelectric (ME) response in a composite of magnetostrictive nickel (Ni) and piezoelectric Pb(Zr1-x, Tix)O3 (PZT). In order to implement this comparative research, Co-based amorphous alloy (CoSiB), Fe-based nanocrystalline alloy (FeCuNbSiB) and Fe-based amorphous alloy (FeSiB) are used according to different magnetostriction (λs) and saturation magnetization (μ0Ms) characteristics. The bending and longitudinal resonant ME voltage coefficients (αME,b and αME,l) are observed comparatively for CoSiB/Ni/PZT, FeCuNbSiB/Ni/PZT, and FeSiB/Ni/PZT composites. The experimental data indicate that the FeSiB/Ni/PZT composite has the largest remanent self-biased αME,b and αME,l due to the largest magnetic grading of λs and μ0 Ms in the FeSiB/Ni layer. When the number of FeSiB foils is four, the maximum remanent αME,b and αME,l at zero bias magnetic field are 57.8 V/cm·Oe and 107.6 V/cm·Oe, respectively. It is recommended that the high-permeability alloy is supposed to have larger λs and μ0 Ms for obtaining a larger remanent self-biased ME responses in ME composite with high-permeability alloy.

Keywords:  magnetoelectric effect      composite materials      high-permeability alloy  
Received:  26 February 2014      Revised:  14 May 2014      Accepted manuscript online: 
PACS:  75.85.+t (Magnetoelectric effects, multiferroics)  
  85.80.Jm (Magnetoelectric devices)  
  77.84.Lf (Composite materials)  
  81.07.Bc (Nanocrystalline materials)  
Fund: 

Project supported by the National High Technology Research and Development Program of China (Grant No. 2012AA040602) and the National Natural Science Foundation of China (Grant No. 61374217).

Corresponding Authors:  Li Ping     E-mail:  liping@cqu.edu.cn

Cite this article: 

Lu Cai-Jiang (鲁彩江), Li Ping (李平), Wen Yu-Mei (文玉梅), Yang Ai-Chao (杨爱超), Yang Chao (杨超), Wang De-Cai (王德才), He Wei (何伟), Zhang Ji-Tao (张吉涛) Self-biased magnetoelectric responses in magnetostrictive/piezoelectric composites with different high-permeability alloys 2014 Chin. Phys. B 23 117503

[1] Zhai J Y, Dong S X, Xing Z P, Li J F and Viehland D 2007 Appl. Phys. Lett. 91 123513
[2] Dong S X, Bai J G, Zhai J Y, Li J F, Lu G Q, Viehland D, Zhang S J and Shrout T R 2005 Appl. Phys. Lett. 86 182506
[3] Zhang S Y, Leung C M, Kuang W and Ho S L 2013 J. Appl. Phys. 113 17C733
[4] Zhang J T, Li P, Wen Y M, He W, Yang A C, Lu C J, Qiu J, Wen J, Yang J, Zhu Y and Yu M 2012 Rev. Sci. Instrum. 83 115001
[5] Dai X Z, Wen Y M, Li P, Yang J and Li M 2011 Sens. Actuat. A 166 94
[6] Jia Y M, Or S W, Chan H L W, Jiao J, Luo H S and van der Zwaag S 2009 Appl. Phys. Lett. 94 263504
[7] Nan C W, Bichurin M I, Dong S X, Viehland D and Srinivasan G 2008 J. Appl. Phys. 103 031101
[8] Yu G L, Li Y X, Zeng Y Q, Li J, Zuo L, Li Q and Zhang H W 2013 Chin. Phys. B 22 077504
[9] Bi K, Wu W and Wang Y G 2011 Chin. Phys. B 20 067503
[10] Chen L, Li P, Wen Y M and Wang D 2011 Acta Phys. Sin. 60 067501 (in Chinese)
[11] Ma J, Hu J M, Li Z and Nan C W 2011 Adv. Mater. 23 1062
[12] Li P, Wen Y M and Bian L X 2007 Appl. Phys. Lett. 90 022503
[13] Lu C J, Li P, Wen Y M, Yang A C, He W and Zhang J T 2013 Appl. Phys. Lett. 102 132410
[14] Mandal S K, Sreenivasulu G, Petrov V M and Srinivasan G 2010 Appl. Phys. Lett. 96 192502
[15] Zhou Y, Yang S C, Apo D J, Maurya D and Priya S 2012 Appl. Phys. Lett. 101 232905
[16] Lage E, Kirchhof C, Hrkac V, Kienle L, Jahns R, Knöche R, Quandt E and Meyners D 2012 Nat. Mater. 11 523
[17] Yang S C, Park C S, Cho K H and Priya S 2010 J. Appl. Phys. 108 093706
[18] Park C S, Cho K H, Arat M A, Evey J and Priya S 2010 J. Appl. Phys. 107 094109
[19] Chen L, Li P, Wen Y M and Wang P 2012 J. Appl. Phys. 112 024504
[20] Lu C J, Li P, Wen Y M, Yang A C, He W, Zhang J T, Yang J, Wen J, Zhu Y and Yu M 2013 Appl. Phys. A 113 413
[21] Lu C J, Li P, Wen Y M, Yang A C, Yang C, Wang D C, He W and Zhang J T 2014 J. Alloy. Compd. 589 498
[1] Analysis on vibration characteristics of large-size rectangular piezoelectric composite plate based on quasi-periodic phononic crystal structure
Li-Qing Hu(胡理情), Sha Wang(王莎), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2022, 31(5): 054302.
[2] Insights into the regulation mechanism of ring-shaped magnetoelectric energy harvesters via mechanical and magnetic conditions
Yang Shi(师阳), Ni Li(李妮), and Yong Yang(杨勇). Chin. Phys. B, 2021, 30(10): 107503.
[3] High permeability and bimodal resonance structure of flaky soft magnetic composite materials
Xi Liu(刘曦), Peng Wu(吴鹏), Peng Wang(王鹏), Tao Wang(王涛), Liang Qiao(乔亮), Fa-Shen Li(李发伸). Chin. Phys. B, 2020, 29(7): 077506.
[4] Magnetoelectric effects in multiferroic Y-type hexaferrites Ba0.3Sr1.7CoxMg2-xFe12O22
Yanfen Chang(畅艳芬), Kun Zhai(翟昆), Young Sun(孙阳). Chin. Phys. B, 2020, 29(3): 037701.
[5] Dynamical anisotropic magnetoelectric effects at ferroelectric/ferromagnetic insulator interfaces
Yaojin Li(李耀进), Vladimir Koval, Chenglong Jia(贾成龙). Chin. Phys. B, 2019, 28(9): 097501.
[6] Structural and optical properties of thermally reduced graphene oxide for energy devices
Ayesha Jamil, Faiza Mustafa, Samia Aslam, Usman Arshad, Muhammad Ashfaq Ahmad. Chin. Phys. B, 2017, 26(8): 086501.
[7] Magnetoelectric effect in multiferroic NdMn2O5
Syed Hamad Bukhari, Javed Ahmad. Chin. Phys. B, 2017, 26(1): 018103.
[8] Magnetoelectric memory effect in the Y-type hexaferrite BaSrZnMgFe12O22
Fen Wang(王芬), Shi-Peng Shen(申世鹏), Young Sun(孙阳). Chin. Phys. B, 2016, 25(8): 087503.
[9] Realization of a flux-driven memtranstor at room temperature
Shi-Peng Shen(申世鹏), Da-Shan Shang(尚大山), Yi-Sheng Chai(柴一晟), Young Sun(孙阳). Chin. Phys. B, 2016, 25(2): 027703.
[10] Modulation of electronic properties with external fields in silicene-based nanostructures
Li Geng (李庚), Zhao Yin-Chang (赵银昌), Zheng Rui (郑蕊), Ni Jun (倪军), Wu Yan-Ning (吴言宁). Chin. Phys. B, 2015, 24(8): 087302.
[11] Toward the complete relational graph of fundamental circuit elements
Shang Da-Shan (尚大山), Chai Yi-Sheng (柴一晟), Cao Ze-Xian (曹则贤), Lu Jun (陆俊), Sun Young (孙阳). Chin. Phys. B, 2015, 24(6): 068402.
[12] Lumped-equivalent circuit model for multi-stage cascaded magnetoelectric dual-tunable bandpass filter
Zhang Qiu-Shi (张秋实), Zhu Feng-Jie (朱锋杰), Zhou Hao-Miao (周浩淼). Chin. Phys. B, 2015, 24(10): 107506.
[13] Modulation of magnetic properties and enhanced magnetoelectric effects in MnW1-xMoxO4 compounds
Fang Yong (房勇), Zhou Wei-Ping (周卫平), Song Yu-Quan (宋育全), Lü Li-Ya (吕丽娅), Wang Dun-Hui (王敦辉), Du You-Wei (都有为). Chin. Phys. B, 2014, 23(7): 077502.
[14] Ferromagnetic resonance frequency shift model of laminated magnetoelectric structure tuned by electric field
Zhou Hao-Miao (周浩淼), Chen Qing (陈晴), Deng Juan-Hu (邓娟湖). Chin. Phys. B, 2014, 23(4): 047502.
[15] Multiferroicity in B-site ordered double perovskite Y2MnCrO6
Fang Yong (房勇), Yan Shi-Ming (颜士明), Qiao Wen (乔文), Wang Wei (王伟), Wang Dun-Hui (王敦辉), Du You-Wei (都有为). Chin. Phys. B, 2014, 23(11): 117501.
No Suggested Reading articles found!