Dimension effects on the dielectric properties of fine BaTiO3 ceramics
Hou Zhi-Wen (侯志文)a, Kang Ai-Guo (康爱国)a, Ma Wei-Qing (马维清)b, Zhao Xiao-Long (赵晓龙)b
a College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China; b Yangquan Power Supply Branch, Yangquan 045000, China
Abstract It is found that the core-shell structured grains are easy to produce for fine grain doped BaTiO3 ceramics in the sintering process. We study the influence of the core-shell structure on the Curie-Weiss temperature and dielectric properties of BaTiO3 ceramics by using effective medium approximation (EMA). Considering the second approximation, the dielectric properties of fine grain doped BaTiO3 ceramics are consistent with experimental data.
Fund: Project supported by the Natural Science Foundation of Shanxi Province, China (Grant No. 2012011028-2).
Corresponding Authors:
Kang Ai-Guo
E-mail: kaglq@126.com
Cite this article:
Hou Zhi-Wen (侯志文), Kang Ai-Guo (康爱国), Ma Wei-Qing (马维清), Zhao Xiao-Long (赵晓龙) Dimension effects on the dielectric properties of fine BaTiO3 ceramics 2014 Chin. Phys. B 23 117701
[1]
Astefanoaei, Dumitr and Stancu 2013 Chin. Phys. B 22 128102
[2]
Rawal B S, Manfred K and Buessem W R 1981 Am. Ceram. Soc. 1 172
[3]
Henning D and Rosentein G 1984 Am. Ceram. Soc. 67 249
[4]
Armstrong T R, Morgens L E, Maurice A K and Buchanan R C 1989 Am. Ceram. Soc. 72 605
[5]
Sakuma T and Yoshida H 2009 Mater. Trans. 50 229
[6]
Cahn J W 1962 Acta Metall. 10 789
[7]
Hillert M 1965 Acta Metall. 13 227
[8]
Estrin Y, Gottstein G, Rabkin E and Shvindlerman L S 2000 Script Mater. 43 141
[9]
Michels A, Krill C E, Ehrhardt H, Birringer R and Wu D T 1999 Acta Mater. 47 2143
[10]
Kirchheim R 2002 Acta Mater. 50 413
[11]
Ponte P, Costanda, deBotton G and Li G 1992 Phys. Rev. B 46 4387
[12]
Berthelot R, Basly B Buffière S, Majimel J, Chevallier G, Alicia W, Amélie V, Laëtitia E, Chung U C, Graziella G, Maglione M, Claude E, Mornet S and Elissalde C 2014 J. Mater. Chem. C 2 683
[13]
Kuo H Y and Peng C Y 2013 Int. J. Engin. Sci. 62 70
[14]
Liu X Y and Li Z Y 1996 Phys. Lett. 223 475
[15]
Keller J B 1964 Math. Phys. 5 548
[16]
Rabkin E 2000 Script Mater. 42 1031
[17]
Orman J A, Grove T L Shimizu N and Contrib 2001 Mineral. Petrol. 141 687
[18]
Li B R, Wang X H and Li L T 2004 Mater. Chem. Phys. 83 23
[19]
He X K Zeng L B, Wu Q S, Zhang LY, Zhu K and Liu Y L 2012 Chin. Phys. B 21 067801
[20]
Habdas P, Paluch M, Drozd-Rzoska A, Malik P and Rzoska S J 1999 Chem Phys. B 241 351
[21]
Suchanicz J and Wojcik K 2003 Sci. Engin. B 104 31
[22]
Yu A Emelyanov N A Ertsev S P Hoffmann-Eifert U, Bottger and Waser R 2002 J. Electroceram. 9 16
[23]
Zhao Z, Buscaglia V, Viviani M, Buscaglia M T, Mitoseriu L, Testino A, Nygren M, Johnesson M and Nanni P 2004 Phys. Rev. B 70 024107
[24]
Liang W Z, Ji Y D, Nan T X, Huang J, Zeng H Z, Du H, Chen C L and Lin Y 2012 Chin. Phys. B 21 067701
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.