Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 118502    DOI: 10.1088/1674-1056/25/11/118502
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Equivalent distributed capacitance model of oxide traps onfrequency dispersion of C-V curve for MOS capacitors

Han-Han Lu(卢汉汉)1, Jing-Ping Xu(徐静平)1, Lu Liu(刘璐)1, Pui-To Lai(黎沛涛)2, Wing-Man Tang(邓咏雯)3
1 School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China;
2 Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China;
3 Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
Abstract  An equivalent distributed capacitance model is established by considering only the gate oxide-trap capacitance to explain the frequency dispersion in the C-V curve of MOS capacitors measured for a frequency range from 1 kHz to 1 MHz. The proposed model is based on the Fermi-Dirac statistics and the charging/discharging effects of the oxide traps induced by a small ac signal. The validity of the proposed model is confirmed by the good agreement between the simulated results and experimental data. Simulations indicate that the capacitance dispersion of an MOS capacitor under accumulation and near flatband is mainly caused by traps adjacent to the oxide/semiconductor interface, with negligible effects from the traps far from the interface, and the relevant distance from the interface at which the traps can still contribute to the gate capacitance is also discussed. In addition, by excluding the negligible effect of oxide-trap conductance, the model avoids the use of imaginary numbers and complex calculations, and thus is simple and intuitive.
Keywords:  MOS capacitor      C-V curve      frequency dispersion      oxide-trap capacitance  
Received:  18 March 2016      Revised:  28 July 2016      Accepted manuscript online: 
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Tv (Field effect devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61176100 and 61274112), the University Development Fund of the University of Hong Kong, China (Grant No. 00600009), and the Hong Kong Polytechnic University, China (Grant No. 1-ZVB1).
Corresponding Authors:  Lu Liu, Wing-Man Tang     E-mail:  liulu@hust.edu.cn;laip@eee.hku.hk

Cite this article: 

Han-Han Lu(卢汉汉), Jing-Ping Xu(徐静平), Lu Liu(刘璐), Pui-To Lai(黎沛涛), Wing-Man Tang(邓咏雯) Equivalent distributed capacitance model of oxide traps onfrequency dispersion of C-V curve for MOS capacitors 2016 Chin. Phys. B 25 118502

[1] Kim H S, Ok I, Zhang M, Zhu F, Park S, Yum J, Zhao H, Lee J C, Majhi P, Goel N, Tsai W, Gaspe C K and Santos M B 2008 Appl. Phys. Lett. 93 062111
[2] Alian A, Brammertz G, Merckling C, Firrincieli A, Wang W E, Lin H C, Caymax M, Meuris M, Meyer K D and Heyns M 2011 Appl. Phys. Lett. 99 112114
[3] Huang Y, Xu J P, Wang L S and Zhu S Y 2013 Acta Phys. Sin. 62 157201(in Chinese)
[4] Chang H D, Sun B, Xue B Q, Liu G M, Zhao W, Wang S K and Liu H G 2013 Chin. Phys. B 22 077306
[5] Chang Y C, Huang M L, Lee K Y, Lee Y J, Lin T D, Hong M, Kwo J, Lay T S, Liao C C and Cheng K Y 2008 Appl. Phys. Lett. 92 072901
[6] Zadeh D H, Oomine H, Suzuki Y, Kakushima K, Ahmet P, Nohira H, Kataoka Y, Nishiyama A, Sugii N, Tsutsui K, Natori K, Hattori T and Iwai H 2013 Solid-State Electron. 82 29
[7] Chobpattana V, Mates T E, Zhang J Y and Stemmer S 2014 Appl. Phys. Lett. 104 182912
[8] Kanda T, Zadea D, Linc Y C, Kakushimab K, Ahmet P, Tsutsui K, Nishiyama A, Sugiib N, Chang E Y, Natori K, Hattori T and Iwai H 2011 ECS Trans. 34 483
[9] Kim E J, Chagarov E, Cagnon J, Yuan Y, Kummel A C, Asbeck P M, Stemmer S, Saraswat K C and McIntyre P C 2009 J. Appl. Phys. 106 124508
[10] Akazawa M and Hasegawa H 2010 Appl. Surf. Sci. 256 5708
[11] Chang C Y, Yokoyama M, Kim S H, Ichikawa O, Osada T, Hata M, Takenaka M and Takagi S 2013 Microelectron. Eng. 109 28
[12] Goel N, Majhi P, Chui C O, Tsai W, Choi D and Harris J S 2006 Appl. Phys. Lett. 89 163517
[13] Nicollian E H and Brews J R 1982 MOS (Metal Oxide Semiconductor) Physics and Technology
[14] Shockley W and Read W T Jr 1952 Phys. Rev. 87 835
[15] Heiman F P and Warfield G 1965 IEEE Trans. Electron Devices ED-12 167
[16] Preier H 1967 Appl. Phys. Lett. 10 361
[17] Mui D S L, Reed J, Biswas D and Morkoç H 1992 J. Appl. Phys. 72 553
[18] Zhang C, Xu M, Ye P D and Li X 2013 IEEE Electron Device Lett. 34 735
[19] Chen H P, Ahn J, McIntyre P C and Taur Y 2013 IEEE Trans. Electron Devices 60 3920
[20] Taur Y, Chen H P, Yuan Y and Yu B 2013 IEEE Electron Device Lett. 34 1343
[21] Pintilie I, Teodorescu C M, Moscatelli F, Nipoti R, Poggi A, Solmi S, Lovlie L S and Svensson B G 2010 J. Appl. Phys. 108 024503
[22] Filip L D, Pintilie I, Nistor L C and Svensson B G 2013 Thin Solid Films 545 22
[23] Yuan Y, Yu B, Ahn J, McIntyre P C, Asbeck P M, Rodwell M J W and Taur Y 2012 IEEE Trans. Electron Dev. 59 2100
[24] Yuan Y, Wang L,Yu B, Shin B, Ahn J, McIntyre P C, Asbeck P M, Rodwell M J W and Taur Y 2011 IEEE Electron Device Lett. 32 485
[25] Polyanin A D and Zaitsev V F 2003 Handbook of Exact Solutions for Ordinary Differential Equations (Boca Raton, FL:CRC Press)
[1] Ozone oxidation of 4H-SiC and flat-band voltage stability of SiC MOS capacitors
Zhi-Peng Yin(尹志鹏), Sheng-Sheng Wei(尉升升), Jiao Bai(白娇), Wei-Wei Xie(谢威威), Zhao-Hui Liu(刘兆慧), Fu-Wen Qin(秦福文), and De-Jun Wang(王德君). Chin. Phys. B, 2022, 31(11): 117302.
[2] Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs
Xi-Ming Chen(陈喜明), Bang-Bing Shi(石帮兵), Xuan Li(李轩), Huai-Yun Fan(范怀云), Chen-Zhan Li(李诚瞻), Xiao-Chuan Deng(邓小川), Hai-Hui Luo(罗海辉), Yu-Dong Wu(吴煜东), and Bo Zhang(张波). Chin. Phys. B, 2021, 30(4): 048504.
[3] Energy-band alignment of atomic layer deposited (HfO2)x(Al2O3)1-x gate dielectrics on 4H-SiC
Jia Ren-Xu (贾仁需), Dong Lin-Peng (董林鹏), Niu Ying-Xi (钮应喜), Li Cheng-Zhan (李诚瞻), Song Qing-Wen (宋庆文), Tang Xiao-Yan (汤晓燕), Yang Fei (杨霏), Zhang Yu-Ming (张玉明). Chin. Phys. B, 2015, 24(3): 038103.
[4] Determination of interface states and their time constant for Au/SnO2/n-Si (MOS) capacitors using admittance measurements
H. M. Baran, A. Tataroğlu. Chin. Phys. B, 2013, 22(4): 047303.
[5] Oxidation of silicon surface with atomic oxygen radical anions
Wang Lian(王莲), Song Chong-Fu(宋崇富), Sun Jian-Qiu(孙剑秋), Hou Ying(侯莹), Li Xiao-Guang(李晓光), and Li Quan-Xin(李全新) . Chin. Phys. B, 2008, 17(6): 2197-2203.
[6] Electrical properties and reliability of HfO2 gate-dielectric MOS capacitors with trichloroethylene surface pretreatment
Xu Jing-Ping(徐静平), Chen Wei-Bing(陈卫兵), Lai Pui-To(黎沛涛), Li Yan-Ping(李艳萍), and Chan Chu-Lok(陈铸略). Chin. Phys. B, 2007, 16(2): 529-532.
No Suggested Reading articles found!