Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 107104    DOI: 10.1088/1674-1056/23/10/107104
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Transverse Zeeman background correction method for air mercury measurement

Li Chuan-Xin (李传新)a b, Si Fu-Qi (司福祺)b, Liu Wen-Qing (刘文清)b, Zhou Hai-Jin (周海金)b, Jiang Yu (江宇)b, Hu Ren-Zhi (胡仁志)b
a Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026, China;
b Key Laboratory of Environmental Optics and Technology. Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
Abstract  By utilizing a natural mercury lamp, the transverse Zeeman background correction method, which is used for trace mercury measurement in air, is studied. In this paper, a natural mercury lamp is used as a light source, and is placed in a 1.78-T magnetic field. The lamp emits two linearly polarized light beams σ± and π of 253.65-nm resonance line, which are used as bias light and absorbing light, respectively. A polarization modulation system is used to allow σ ± and π light beams to pass through alternately with a certain frequency. A multipath optical cell with 12-m optical path is used to increase optical distance. Based on the system described above, the influence caused by UV absorbing gases, such as NO2, SO2, acetone, benzene, and O3, is analyzed. The results show that it may reduce the detection limit when the concentrations of these gases exceed 83.4 ppm, 20.3 ppm, 142.3 ppm, 0.85 ppm, and 0.55 ppm, respectively. The detection limit of the system is calculated and can achieve up to 1.44 ng/m3 in 10 minutes. Measurements on mercury sample gas and air are carried out, and the measured data are compared with the data of RA-915 mercury analyzer (Russia). The result shows that the correlation coefficient reaches up to 0.967. The experimental results indicate that the transverse Zeeman background correction method can be used to quantify trace mercury in air with high-precision.
Keywords:  transverse Zeeman background correction      natural mercury lamp      magnetic field      multipath optical cell  
Received:  13 November 2013      Revised:  27 May 2014      Accepted manuscript online: 
PACS:  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  96.30.Dz (Mercury)  
  96.50.Bh (Interplanetary magnetic fields)  
  43.38.Ne (Mechanical, optical, and photographic recording and reproducing systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 41275037), the Science-Technology Foundation for Young Scientist of Anhui Province, China (Grant No. 1308085JGD03), and the Anhui Provincial Natural Science Foundation, China (Grant No. 1308085QF124).
Corresponding Authors:  Si Fu-Qi     E-mail:  sifuqi@aiofm.ac.cn
About author:  71.70.Ej; 96.30.Dz; 96.50.Bh; 43.38.Ne

Cite this article: 

Li Chuan-Xin (李传新), Si Fu-Qi (司福祺), Liu Wen-Qing (刘文清), Zhou Hai-Jin (周海金), Jiang Yu (江宇), Hu Ren-Zhi (胡仁志) Transverse Zeeman background correction method for air mercury measurement 2014 Chin. Phys. B 23 107104

[1]Hansen J C and Danscher G 2011 Rev. Environ. Health 12 107
[2]Renzoni A, Zino F and Franchi E 1998 Environ. Res. 77 68
[3]Pacyna E G, Pacyna J M, Steenhuisen F and Wilson S 2006 Atmos. Environ. 40 4048
[4]Streets D G, Hao J, Wu Y, Jiang J K, Chan M, Tian H Z and Feng X B 2005 Atmos. Environ. 39 7789
[5]Munthe J, Wangberg I and Pirrone N, Munthe J, Wangberg I, Pirrone N, Iverfeldt A, Ferrara R, Ebinghaus R, Feng X, Gardfeldt K, Keeler G and Lanzillotta E 2001 Atmos. Environ. 35 3007
[6]Schroeder W H and Munthe J 1998 Atmos. Environ. 32 809
[7]Lindberg S, Bullock R, Ebinghaus R, Engstrom D, Feng X B, Fitzgerald W, Pirrone N, Prestbo E and Seigneur C 2007 J. Human Environ. 36 19
[8]Chudzyński K, Bielawski L and Falandysz J 2009 Bull. Environ. Contam. Toxicol. 83 275
[9]Ebinghaus R and Slemr F 2000 Atmos. Environ. 34 895
[10]Hadeishi T and Mclaughl R D 1971 Science 74 404
[11]Hadeishi T, Church D A, Mclaughlin R D, Zak B D, Nakamura M and Chang B 1975 Science 187 348
[12]Sholupov S, Pogarev S, Ryzhov V, Mashyanov N and Stroganov A 2004 Fuel Process. Technol. 85 473
[13]Hideaki K and Kazuo Y 1975 Anal. Chem. 47 1679
[14]Platt U, Meinen J, Pohler D and Leisner T 2008 Atmos. Meas. Technol. 1 481
[15]Jenouvrier A, Coquart B and Merienne M F 1996 J. Atmosph. Chem. 25 21
[16]Wu C Y R, Yang B W, Chen F Z, Judge D L, Caldwell J and Trafton L M 2000 Icarus 145 289
[17]Etzkorn T, Klotz B, Sorensen S, Patroescu I V, Barnes I, Becker H K and Platta U 1999 Atmos. Environ. 33 525
[18]Koch J D, Gronki J and Hanson K R 2008 Journal of Quantitative Spectroscopy and Radiative Transfer 109 2037
[19]Brian J, Chakir A, Daumont D, Malicet J and Parisse C 1993 Chem. Phys. Lett. 213 610
[20]Mason R P, Fitzgerald W F and Morel1 F M M 1994 Geochimica et Cosmochimica Acta 58 3191
[1] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[2] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[3] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[4] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[5] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
[6] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[7] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[8] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[9] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
[10] Magnetization and magnetic phase diagrams of a spin-1/2 ferrimagnetic diamond chain at low temperature
Tai-Min Cheng(成泰民), Mei-Lin Li(李美霖), Zhi-Rui Cheng(成智睿), Guo-Liang Yu(禹国梁), Shu-Sheng Sun(孙树生), Chong-Yuan Ge(葛崇员), and Xin-Xin Zhang(张新欣). Chin. Phys. B, 2021, 30(5): 057503.
[11] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[12] An electromagnetic view of relay time in propagation of neural signals
Jing-Jing Xu(徐晶晶), San-Jin Xu(徐三津), Fan Wang(王帆), and Sheng-Yong Xu(许胜勇). Chin. Phys. B, 2021, 30(2): 028701.
[13] Exploration of magnetic field generation of H32+ by direc ionization and coherent resonant excitation
Zhi-Jie Yang(杨志杰), Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2021, 30(12): 123203.
[14] Novel compact and lightweight coaxial C-band transit-time oscillator
Xiao-Bo Deng(邓晓波), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Bing-Fang Deng(邓秉方), Li-Li Song(宋莉莉), Fu-Xiang Yang(阳福香), Wei-Li Xu(徐伟力). Chin. Phys. B, 2020, 29(9): 095205.
[15] Enhancement of the photoassociation of ultracold atoms via a non-resonant magnetic field
Ji-Zhou Wu(武寄洲), Yu-Qing Li(李玉清), Wen-Liang Liu(刘文良), Peng Li(李鹏), Xiao-Feng Wang(王晓锋), Peng Chen(陈鹏), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(8): 083303.
No Suggested Reading articles found!