Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 093204    DOI: 10.1088/1674-1056/23/9/093204
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Controllable optical mirror of cesium atoms with four-wave mixing

Zhou Hai-Tao (周海涛)a b, Wang Dan (王丹)a, Guo Miao-Jun (郭苗军)a, Gao Jiang-Rui (郜江瑞)a b, Zhang Jun-Xiang (张俊香)a
a The State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China;
b College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China
Abstract  The controllable optical mirror is experimentally accomplished in a Λ-type three-level atomic system coupled with standing wave. It is shown that the reflection of probe light results from electromagnetically-induced-transparency-based four-wave mixing, therefore the reflection efficiency is highly dependent on the angle for phase matching condition between the probe and coupling fields. The measured reflection spectra show good agreement with dispersion compensation theory.
Keywords:  optical mirror      four-wave mixing      phase mismatching      anomalous dispersion  
Received:  01 April 2014      Revised:  06 May 2014      Accepted manuscript online: 
PACS:  32.80.Qk (Coherent control of atomic interactions with photons)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  32.80.Wr (Other multiphoton processes)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61308121 and 11274210) and the National Basic Research Program of China (Grant Nos. 2010CB923102 and 2011CB922203).
Corresponding Authors:  Zhang Jun-Xiang     E-mail:  junxiang@sxu.edu.cn

Cite this article: 

Zhou Hai-Tao (周海涛), Wang Dan (王丹), Guo Miao-Jun (郭苗军), Gao Jiang-Rui (郜江瑞), Zhang Jun-Xiang (张俊香) Controllable optical mirror of cesium atoms with four-wave mixing 2014 Chin. Phys. B 23 093204

[1] Boller K J, Imamoğlu A and Harris S E 1991 Phys. Rev. Lett. 66 2593
[2] Eisaman M D, Andre A, Massou M, Fleischhauer M, Zibrov A S and Lukin M D 2005 Nature 438 837
[3] Fleischhauer M, Imamoğlu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[4] Wu B, Hulbert J F, Lunt E J, Hurd K, Hawkins A R and Schmidt H 2010 Nat. Photonics 4 776
[5] McClelland J J, Scholten R E, Palm E C and Celotta R J 1993 Science 262 877
[6] Drodofsky U, Stuhler J, Schulze T, Drewsen M, Brezger B, Pfau T and Mlynek J 1997 Appl. Phys. B 65 755
[7] McGowan R W, Giltner D M and Lee S A 1995 Opt. Lett. 20 2535
[8] Ohmukai R, Urabe S and Watanabe M 2003 Appl. Phys. B 77 415
[9] Te S E, Smeets B, van der Stam K M R, Herfst R W, van der Straten P, Beijerinck H C W and van Leeuwen K A H 2004 Appl. Phys. Lett. 85 4493
[10] Zhang J X, Zhou H T, Wang D W and Zhu S Y 2011 Phys. Rev. A 83 053841
[11] Zhang Y L, Jiang L, Sun Z R, Ding L E and Wang Z G 2003 Chin. Phys. 12 174
[12] Artoni M and Rocca G C L 2013 Phys. Rev. Lett. 110 093901
[14] Zhang Y P, Wu H C, Wang P F and Li C S 2000 Chin. Phys. 9 599
[15] Li Z H, Li Y, Dou Y F and Zhang J X 2012 Chin. Phys. B 21 034204
[16] Li Z H, Li Y, Dou Y F, Gao J R and Zhang J X 2012 Chin. Phys. Lett. 29 014202
[17] Kuang S Q, Wan R G, Du P, Jiang Y and Gao J Y 2008 Opt. Express 16 15455
[18] Mitsunaga M and Imoto N 1999 Phys. Rev. A 59 4773
[19] Bae I H and Moon H S 2011 Phys. Rev. A 83 053806
[20] Zhou H T, Wang D W, Wang D, Zhang J X and Zhu S Y 2011 Phys. Rev. A 84 053835
[21] Guo M J, Zhou H T, Wang D, Gao J R, Zhang J X and Zhu S Y 2014 Phys. Rev. A 89 033813
[22] Zhang X H, Hu X M, Kong L F and Zhang X 2010 Chin. Phys. B 27 094208
[1] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[2] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[3] A two-mode squeezed light based on a double-pump phase-matching geometry
Xuan-Jian He(何烜坚), Jun Jia(贾俊), Gao-Feng Jiao(焦高锋), Li-Qing Chen(陈丽清), Chun-Hua Yuan(袁春华), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2020, 29(7): 074207.
[4] Coherent 420 nm laser beam generated by four-wave mixing in Rb vapor with a single continuous-wave laser
Hao Liu(刘浩), Jin-Peng Yuan(元晋鹏), Li-Rong Wang(汪丽蓉), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(4): 043203.
[5] Loss induced negative refraction and super-prism effect at highly absorptive interface
Jian Wu(吴坚), Tao Wang(王涛), Tianyue Hou(侯天悦), Xuefen Kan(阚雪芬), Cheng Yin(殷澄), Pu Zhou(周朴), Zhuangqi Cao(曹庄琪). Chin. Phys. B, 2019, 28(5): 054201.
[6] Simultaneous polarization separation and switching for 100-Gbps DP-QPSK signals in backbone networks
Yu-Long Su(苏玉龙), Huan Feng(冯欢), Hui Hu(胡辉), Wei Wang(汪伟), Tao Duan(段弢), Yi-Shan Wang(王屹山), Jin-Hai Si(司金海), Xiao-Ping Xie(谢小平), He-Ning Yang(杨合宁), Xin-Ning Huang(黄新宁). Chin. Phys. B, 2019, 28(2): 024216.
[7] Electro-optomechanical switch via tunable bistability and four-wave mixing
Kamran Ullah. Chin. Phys. B, 2019, 28(11): 114209.
[8] Characterize and optimize the four-wave mixing in dual-interferometer coupled silicon microrings
Chao Wu(吴超), Yingwen Liu(刘英文), Xiaowen Gu(顾晓文), Shichuan Xue(薛诗川), Xinxin Yu(郁鑫鑫), Yuechan Kong(孔月婵), Xiaogang Qiang(强晓刚), Junjie Wu(吴俊杰), Zhihong Zhu(朱志宏), Ping Xu(徐平). Chin. Phys. B, 2019, 28(10): 104211.
[9] Enhancement of multiple four-wave mixing via cascaded fibers with discrete dispersion decreasing
Jia-Bao Li(李嘉宝), Ling-Jie Kong(孔令杰), Xiao-Sheng Xiao(肖晓晟), Chang-Xi Yang(杨昌喜). Chin. Phys. B, 2017, 26(6): 064205.
[10] Probe gain via four-wave mixing based on spontaneously generated coherence
Hong Yang(杨红), Ting-gui Zhang(张廷桂), Yan Zhang(张岩). Chin. Phys. B, 2017, 26(2): 024204.
[11] Photon statistics of pulse-pumped four-wave mixing in fiber with weak signal injection
Nan-Nan Liu(刘楠楠), Yu-Hong Liu(刘宇宏), Jia-Min Li(李嘉敏), Xiao-Ying Li(李小英). Chin. Phys. B, 2016, 25(7): 074203.
[12] Observation of multi-Raman gain resonances in rubidium vapor
Jun Liu(刘俊), Dong Wei(卫栋), Jin-wen Wang(王金文), Ya Yu(余娅), Hua-jie Hu(胡华杰), Hong Gao(高宏), Fu-li Li(李福利). Chin. Phys. B, 2016, 25(11): 114204.
[13] Beam propagation method for wide-fieldnonlinear wave mixing microscope
Lv Yong-Gang (吕永钢), Ji Zi-Heng (纪子衡), Yu Wen-Tao (于文韬), Shi Ke-Bin (施可彬). Chin. Phys. B, 2015, 24(9): 094211.
[14] Image information transfer via electromagnetically induced transparency-based slow light
Wang Xiao-Xiao (王潇潇), Sun Jia-Xiang (孙家翔), Sun Yuan-Hang (孙远航), Li Ai-Jun (李爱军), Chen Yi (陈怡), Zhang Xiao-Jun (张晓军), Kang Zhi-Hui (康智慧), Wang Lei (王磊), Wang Hai-Hua (王海华), Gao Jin-Yue (高锦岳). Chin. Phys. B, 2015, 24(7): 074204.
[15] Experimental study on the Stokes effect in disordered birefringent microstructure fibers
Zhao Yuan-Yuan (赵原源), Zhou Gui-Yao (周桂耀), Li Jian-She (李建设), Zhang Zhi-Yuan (张志远), Han Ying (韩颖). Chin. Phys. B, 2014, 23(8): 084208.
No Suggested Reading articles found!