Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 080303    DOI: 10.1088/1674-1056/23/8/080303
GENERAL Prev   Next  

Security of a practical semi-device-independent quantum key distribution protocol against collective attacks

Wang Yang (汪洋)a b, Bao Wan-Su (鲍皖苏)a b, Li Hong-Wei (李宏伟)a b, Zhou Chun (周淳)a b, Li Yuan (李源)a b
a Institute of Cryptographic Engineering, The PLA Information Engineering University, Zhengzhou 450001, China;
b Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  Similar to device-independent quantum key distribution (DI-QKD), semi-device-independent quantum key distribution (SDI-QKD) provides secure key distribution without any assumptions about the internal workings of the QKD devices. The only assumption is that the dimension of the Hilbert space is bounded. But SDI-QKD can be implemented in a one-way prepare-and-measure configuration without entanglement compared with DI-QKD. We propose a practical SDI-QKD protocol with four preparation states and three measurement bases by considering the maximal violation of dimension witnesses and specific processes of a QKD protocol. Moreover, we prove the security of the SDI-QKD protocol against collective attacks based on the min-entropy and dimension witnesses. We also show a comparison of the secret key rate between the SDI-QKD protocol and the standard QKD.
Keywords:  quantum key distribution      semi-device-independent      collective attacks      secret key rate  
Received:  08 November 2013      Revised:  06 January 2014      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB338002) and the National Natural Science Foundation of China (Grant Nos. 11304397 and 11204379).
Corresponding Authors:  Bao Wan-Su     E-mail:  2010thzz@sina.com

Cite this article: 

Wang Yang (汪洋), Bao Wan-Su (鲍皖苏), Li Hong-Wei (李宏伟), Zhou Chun (周淳), Li Yuan (李源) Security of a practical semi-device-independent quantum key distribution protocol against collective attacks 2014 Chin. Phys. B 23 080303

[1] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dusek M, Lütkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301
[2] Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (Bangalore, India) p. 175
[3] Li H W, Chen W, Huang J Z, Yao Y, Liu D, Li F Y, Wang S, Yin Z Q, He D Y, Zhou Z, Li Y H, Yu N H and Han Z F 2012 Sci. Sin.: Phys. Mech. Astron. 42 1237 (in Chinese)
[4] Zhou Z W, Chen W, Sun F W, Xiang G Y and Li C F 2012 Chin. Sci. Bull. 57 1498 (in Chinese)
[5] Liu D, Yin Z Q, Wang S, Wang F M, Chen W and Han Z F 2012 Chin. Phys. B 21 060202
[6] Zhou Y Y, Zhou X J, Tian P G and Wang Y J 2013 Chin. Phys. B 22 010305
[7] Jiao R Z, Ding T, Wang W J and Ma H Q 2013 Acta Phys. Sin. 62 180302 (in Chinese)
[8] Yin Z Q, Han Z F, Chen W, Xu F X, Wu Q L and Guo G C 2008 Chin. Phys. Lett. 25 3547
[9] Wang X Y, Bai Z L, Wang S F, Li Y M and Peng K C 2013 Chin. Phys. Lett. 30 010305
[10] Zhao S M, Gong L Y, Li Y Q, Yang H, Sheng Y B and Cheng W W 2013 Chin. Phys. Lett. 30 060305
[11] Guo B H, Yang L, Xiang C, Guan C, Wu L A and Liu S H 2013 Acta Phys. Sin. 62 130303 (in Chinese)
[12] Lo H K and Chau H F 1999 Science 283 2050
[13] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[14] Mayers D 2001 J. ACM 48 351
[15] Koashi M 2009 New J. Phys. 11 045018
[16] Tomamichel M and Renner R 2011 Phys. Rev. Lett. 106 110506
[17] Kraus B, Gisin N and Renner R 2005 Phys. Rev. Lett. 95 080501
[18] Renner R, Gisin N and Kraus B 2005 Phys. Rev. A 72 012332
[19] Qi B, Fung C H F, Lo H K and Ma X 2007 Quantum Inf. Comput. 7 73
[20] Zhao Y, Fung C H F, Qi B, Chen C and Lo H K 2008 Phys. Rev. A 78 042333
[21] Fung C H F, Qi B, Tamaki K and Lo H K 2007 Phys. Rev. A 75 032314
[22] Xu F, Qi B and Lo H K 2010 New J. Phys. 12 113026
[23] Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J and Makarov V 2010 Nat. Photon. 4 686
[24] Gerhardt I, Liu Q, Lamas-Linares A, Skaar J, Kurtsiefer C and Makarov V 2011 Nat. Commun. 2 349
[25] Li H W, Wang S, Huang J Z, Chen W, Yin Z Q, Li F Y, Zhou Z, Liu D, Zhang Y, Guo G C, Bao W S and Han Z F 2011 Phys. Rev. A 84 062308
[26] Acín A, Brunner N, Gisin N, Massar S, Pironio S and Scarani V 2007 Phys. Rev. Lett. 98 230501
[27] Masanes L, Pironio S and Acín A 2011 Nat. Commun. 2 238
[28] Pironio S, Masanes L, Leverrier A and Acín A 2013 Phys. Rev. X 3 031007
[29] Bell J S 1964 Physics (NY) 1 195
[30] Pearle P M 1970 Phys. Rev. D 2 1418
[31] Pawlowski M and Brunner N 2011 Phys. Rev. A 84 010302
[32] Branciard C, Cavalcanti E G, Walborn S P, Scarani V and Wiseman H M 2012 Phys. Rev. A 85 010301
[33] Wang Y, Bao W S, Li H W, Zhou C and Li Y 2013 Phys. Rev. A 88 052322
[34] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[35] Braunstein S L and Pirandola S 2012 Phys. Rev. Lett. 108 130502
[36] Zhou C, Bao W S, Chen W, Li H W, Yin Z Q, Wang Y and Han Z F 2013 Phys. Rev. A 88 052333
[37] Gallego R, Brunner N, Hadley C and Acín A 2010 Phys. Rev. Lett. 105 230501
[38] Nayak A 1999 Proceedings of 40th IEEE FOCS p. 369
[39] Li H W, Yin Z Q, Wu Y C, Zou X B, Wang S, Chen W, Guo G C and Han Z F 2011 Phys. Rev. A 84 034301
[40] Li H W, Pawlowski M, Yin Z Q, Guo G C and Han Z F 2012 Phys. Rev. A 85 052308
[41] Ambainis A, Nayak A, Ta-Shma A and Vazirani U 2002 J. ACM 49 496
[42] Hayashi M, Iwama K, Nishimura H, Raymond R and Yamashita S 2006 New J. Phys. 8 129
[43] König R, Renner R and Schaffner C 2009 IEEE Trans. Inf. Theory 55 4337
[44] Devetak I and Winter A 2005 Proc. R. Soc. A 461 207
[45] Levenberg K 1944 Q. Appl. Math. 2 164
[46] Hendrych M, Gallego R, Micuda M, Brunner N, Acín A and Torres J P 2012 Nat. Phys. 8 588
[47] Ahrens J, Badziag P, Cabello A and Bourennane M 2012 Nat. Phys. 8 592
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[6] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[7] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[8] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[9] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[10] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[11] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[12] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[13] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[14] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
[15] Reference-frame-independent quantum key distribution of wavelength division multiplexing with multiple quantum channels
Zhongqi Sun(孙钟齐), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Zhenhua Li(李振华), Fen Zhou(周芬), Yuqing Huang(黄雨晴), and Haiqiang Ma(马海强). Chin. Phys. B, 2021, 30(11): 110303.
No Suggested Reading articles found!