|
|
Optimal 1→M phase-covariant cloning in three dimensions |
Zhang Wen-Hai (张文海)a, Yu Long-Bao (余龙宝)b, Cao Zhuo-Liang (曹卓良)b, Ye Liu (叶柳)c |
a Department of Physics, Huainan Normal University, Huainan 232001, China; b School of Electronic and Information Engineering, Hefei Normal University, Hefei 230061, China; c School of Physics and Material Science, Anhui University, Hefei 230039, China |
|
|
Abstract In this paper, we derive the explicit transformations of the optimal 1→3, 4, 5 phase-covariant cloning in three dimensions, and then generalize them to the cases of 1→M = 3n, 3n+1, 3n+2 (n≥1 integer) cloning. The clone fidelities are coincident with the theoretical bounds found.
|
Received: 23 August 2013
Revised: 08 January 2014
Accepted manuscript online:
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.65.-w
|
(Quantum mechanics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074002, 61073048, and 11104057), the Natural Science Foundation of the Education Department of Anhui Province, China (Grant Nos. KJ2010ZD08 and KJ2012A245), and the Postgraduate Program of Huainan Normal University of China. |
Corresponding Authors:
Zhang Wen-Hai
E-mail: zhangwenhaianhui@aliyun.com
|
About author: 03.67.-a; 03.65.-w |
Cite this article:
Zhang Wen-Hai (张文海), Yu Long-Bao (余龙宝), Cao Zhuo-Liang (曹卓良), Ye Liu (叶柳) Optimal 1→M phase-covariant cloning in three dimensions 2014 Chin. Phys. B 23 070304
|
[1] |
Wootters W K and Zurek W H 1982 Nature 299 802
|
[2] |
Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
|
[3] |
Bužek V and Hillery M 1996 Phys. Rev. A 54 1844
|
[4] |
Wu T, Fang B L and Ye L 2013 Chin. Phys. B 22 110311
|
[5] |
Gisin N and Massar S 1997 Phys. Rev. Lett. 79 2153
|
[6] |
Werner R F 1998 Phys. Rev. A 58 1827
|
[7] |
Cerf N J 2000 Phys. Rev. Lett. 84 4497
|
[8] |
Iblisdir S, Acín A, Cerf N J, Filip R, Fiurášek J and Gisin N 2005 Phys. Rev. A 72 042328
|
[9] |
Zhang W H, Yu L B, Yang M and Cao Z L 2012 Sci China-Phys. Mech. Astron. 55 60
|
[10] |
Bruβ D, Cinchetti M, D'Ariano G M and Macchiavello C 2000 Phys. Rev. A 62 012302
|
[11] |
Fan H, Matsumoto K, Wang X B and Wadati M 2001 Phys. Rev. A 65 012304
|
[12] |
Fan H, Imai H, Matsumoto K and Wang X B 2003 Phys. Rev. A 67 022317
|
[13] |
D'Ariano G M and Macchiavello C 2003 Phys. Rev. A 67 042306
|
[14] |
Buscemi F, D'Ariano G M and Macchiavello C 2005 Phys. Rev. A 71 042327
|
[15] |
Zhang W H and Ye L 2007 New J. Phys. 9 318
|
[16] |
Zhang W H and Ye L 2009 Chin. Phys. B 18 3702
|
[17] |
Bruss D, Ekert A and Macchiavello C 1998 Phys. Rev. Lett. 81 2598
|
[18] |
Macchiavello C 2003 Phys. Rev. A 67 062302
|
[19] |
D'Ariano G M, Macchiavello C and Perinotti P 2005 Phys. Rev. A 72 042327
|
[20] |
Bae J and Acín A 2006 Phys. Rev. Lett. 97 030402
|
[21] |
Zhao Z, Zhang A N, Zhou X Q, Chen Y A, Lu C Y, Karlsson A and Pan J W 2005 Phys. Rev. Lett. 95 030502
|
[22] |
Du J F, Durt T, Zou P, Li H, Kwek L C, Lai C H, Oh C H and Eker A 2005 Phys. Rev. Lett. 94 040505
|
[23] |
Chen H W, Zhou X Y, Suter D and Du J F 2007 Phys. Rev. A 75 012317
|
[24] |
Bartušková L, Dušek M, Cernoch A Soubusta J and Fiurášek J 2007 Phys. Rev. Lett. 99 120505
|
[25] |
Xu J S, Li C F, Chen L, Zou X B and Guo G C 2008 Phys. Rev. A 78 032322
|
[26] |
Lamoureux L P, Navez P, Fiurášek J and Cerf N J 2004 Phys. Rev. A 69 040301
|
[27] |
Karpov E, Navez P and Cerf N J 2005 Phys. Rev. A 72 042314
|
[28] |
Fiurášek J, Iblisdir S, Massar S and Cerf N J 2002 Phys. Rev. A 65 040302
|
[29] |
Kato G 2010 Phys. Rev. A 82 032314
|
[30] |
Zhan Y B 2008 Chin. Phys. B 17 411
|
[31] |
Dai J L and Zhang W H 2009 Chin. Phys. B 18 426
|
[32] |
Song Q M and Ye L 2010 Chin. Phys. B 19 080309
|
[33] |
Zhou Y H 2011 Chin. Phys. B 20 080305
|
[34] |
Zhou Y H, Wang L and Lai X L 2013 Chin. Phys. B 22 050305
|
[35] |
Enk S V 2005 Phys. Rev. Lett. 95 010502
|
[36] |
Ricci M, Sciarrino F, Cerf N J, Filip R, Fiuráše J and Martini F D 2005 Phys. Rev. Lett. 95 090504
|
[37] |
Chiribella G and D'Ariano G M 2006 Phys. Rev. Lett. 97 250503
|
[38] |
Zhang W H, Yu L B, Cao Z L and Ye Liu 2013 Chin. Phys. B 22 030312
|
[39] |
Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systum and Singnal Processing, December 10-19, 1984 Bangalore, India, p. 175
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|