Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 064216    DOI: 10.1088/1674-1056/23/6/064216
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Partially coherent Gaussian-Schell model pulse beam propagation in slant atmospheric turbulence

Li Ya-Qing (李亚清)a, Wu Zhen-Sen (吴振森)a, Wang Ming-Jun (王明军)b
a School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China;
b School of Physics and Electronic Engineering, Xianyang Normal College, Xianyang 712000, China
Abstract  Based on the extended Huygens-Fresnel principle, a two-frequency, two-point cross-spectral density function of partially coherent Gaussian-Schell model pulse (GSMP) beam propagation in slant atmospheric turbulence is derived. Using the Markov approximation method and on the assumption that (ω1 - ω2)/(ω1 + ω2) ≤ 1, the theory obtained is valid for turbulence of any strength and can be applied to narrow-band signals. The expressions for average beam intensity, the beam size, and the two-frequency complex degree of coherence of a GSMP beam are obtained. The numerical results are presented, and the effects of the frequency, initial pulse width, initial beam radius, zenith angle, and outer scales on the complex degree of coherence are discussed. This study provides a better understanding of the second-order statistics of a GSMP beam propagating through atmospheric turbulence in the space-frequency domain.
Keywords:  atmospheric propagation      partial coherence      atmospheric turbulence  
Received:  23 October 2013      Revised:  18 November 2013      Accepted manuscript online: 
PACS:  42.25.Dd (Wave propagation in random media)  
  42.25.Kb (Coherence)  
  42.68.Bz (Atmospheric turbulence effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61172031 and 61271110).
Corresponding Authors:  Wu Zhen-Sen     E-mail:  wuzhs@mail.xidian.edu.cn

Cite this article: 

Li Ya-Qing (李亚清), Wu Zhen-Sen (吴振森), Wang Ming-Jun (王明军) Partially coherent Gaussian-Schell model pulse beam propagation in slant atmospheric turbulence 2014 Chin. Phys. B 23 064216

[1] Mintzer D 1953 J. Acoust. Soc. Am. 25 922
[2] Shirokova T A 1963 Sov. Phy. Acoust. 9 78
[3] Knollman G C 1965 J. Appl. Phys. 36 3704
[4] Alimov V A and Erukhimov L M 1968 Radiophys. Quantum Electron. 11 268
[5] Su H H and Plonus M A 1971 J. Opt. Soc. Am. 61 256
[6] Gardner C S and Plonus M A 1974 J. Opt. Soc. Am. 64 68
[7] Erukhimov L M, Zarnitsyna I G A and Kirsh P I 1973 Radiophys. Quantum Electron. 16 436
[8] Liu C H, Wernik A W and Yeh K C 1974 IEEE Trans. Anten. Propag. 22 624
[9] Lee L C and Jokipii J R 1975 Astrophys. J. 201 532
[10] Sreenivasiah I, Ishimaru A and Hong S T 1976 Radio Sci. 11 775
[11] Sreenivasiah I and Ishimaru A 1979 Appl. Opt. 18 1613
[12] Fante R L 1981 J. Opt. Soc. Am. 71 1446
[13] Young C Y, Ishimaru A and Andrews L C 1996 Appl. Opt. 35 6522
[14] Young C Y, Andrews L C and Ishimaru A 1998 Appl. Opt. 37 7655
[15] Jurado-Navas A, Garrido-Balsells J M, Castillo-Vázquez M and Puerta-Notario A 2009 Opt. Lett. 34 3662
[16] Antonio J N, María G-B José, Miguel C-Vázquez and Antonio P N 2010 Opt. Express 18 17346
[17] Chen C Y, Yang H M, Lou Y and Tong S F 2011 Opt. Express 19 15196
[18] Chen C Y, Yang H M, Lou Y, Tong S F and Liu R C 2012 Opt. Express 20 7749
[19] Zhang M, Wu Z S, Zhang Y D and Yang T G 2001 Acta Phys. Sin. 50 1052 (in Chinese)
[20] Wang T and Pu J X 2007 Acta Phys. Sin. 56 6754 (in Chinese)
[21] Li J H, Yang A L and Lü B D 2009 Acta Phys. Sin. 58 674 (in Chinese)
[22] Lü B D, Li J H and Zhang H R 2010 Chin. Phys. B 19 099201
[23] Ji X L 2010 Acta Phys. Sin. 59 3953 (in Chinese)
[24] Li Y Q and Wu Z S 2012 Chin. Phys. B 21 054203
[25] Fang G J and Pu J X 2012 Chin. Phys. B 21 084203
[26] Lajunen H, Vahimaa P and Tervo J 2005 J. Opt. Soc. Am. A 22 1536
[27] Andrews L C and Phillips R L 2005 Laser Beam Propagation Through Random Media (Washington: SPIE Press Bellingham) Chaps. 4 and 5
[28] Fante R 1980 Proc. IEEE 68 1424
[29] Ishimaru A 1972 IEEE Trans. Anten. Propag. 20 10
[30] Fante R and Poirier J 1973 Appl. Opt. 12 2247
[31] ITU-R Document 3J/31-E 2001 Radio Communication Study Group Meeting, Budapest, Hungary, 206 p. 277
[32] Tatarskii V 1971 The Effect of the Turbulent Atmosphere on Wave Propagation (Springfield: Israel Program for Scientific Translations) p. 148
[1] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[2] Non-Gaussian statistics of partially coherent light inatmospheric turbulence
Hao Ni(倪昊), Chunhao Liang(梁春豪), Fei Wang(王飞), Yahong Chen(陈亚红), Sergey A. Ponomarenko, Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(6): 064203.
[3] Influence of moderate-to-strong anisotropic non-Kolmogorov turbulence on intensity fluctuations of a Gaussian-Schell model beam in marine atmosphere
Mingjian Cheng(程明建), Lixin Guo(郭立新), Jiangting Li(李江挺). Chin. Phys. B, 2018, 27(5): 054203.
[4] Propagation factor of electromagnetic concentric rings Schell-model beams in non-Kolmogorov turbulence
Zhen-Zhen Song(宋真真), Zheng-Jun Liu(刘正君), Ke-Ya Zhou(周可雅), Qiong-Ge Sun(孙琼阁), Shu-Tian Liu(刘树田). Chin. Phys. B, 2017, 26(2): 024201.
[5] A new method of calculating the orbital angular momentum spectra of Laguerre-Gaussian beams in channels with atmospheric turbulence
Xiao-zhou Cui(崔小舟), Xiao-li Yin(尹霄丽), Huan Chang(常欢), Zhi-chao Zhang(张志超), Yong-jun Wang(王拥军), Guo-hua Wu(吴国华). Chin. Phys. B, 2017, 26(11): 114207.
[6] Theoretical and experimental study on broadband terahertz atmospheric transmission characteristics
Shi-Bei Guo(郭拾贝), Kai Zhong(钟凯), Mao-Rong Wang(王茂榕), Chu Liu(刘楚), Yong Xiao(肖勇), Wen-Peng Wang(王文鹏), De-Gang Xu(徐德刚), Jian-Quan Yao(姚建铨). Chin. Phys. B, 2017, 26(1): 019501.
[7] Performance analysis of LDPC codes on OOK terahertz wireless channels
Chun Liu(刘纯), Chang Wang(王长), Jun-Cheng Cao(曹俊诚). Chin. Phys. B, 2016, 25(2): 028702.
[8] Optimizing calculation of phase screen distribution with minimum condition along an inhomogeneous turbulent path
Wen-Yi Shao(邵文毅), Hao Xian(鲜 浩). Chin. Phys. B, 2016, 25(11): 114212.
[9] Turbulence mitigation scheme based on multiple-user detection in an orbital-angular-momentum multiplexed system
Li Zou(邹丽), Le Wang(王乐), Sheng-Mei Zhao(赵生妹), Han-Wu Chen(陈汉武). Chin. Phys. B, 2016, 25(11): 114215.
[10] Influence of the illumination coherency and illumination aperture on the ptychographic iterative microscopy
Liu Cheng (刘诚), Zhu Jian-Qiang (朱健强), John Rodenburg. Chin. Phys. B, 2015, 24(2): 024201.
[11] Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum
Wang Le (王乐), Zhao Sheng-Mei (赵生妹), Gong Long-Yan (巩龙延), Cheng Wei-Wen (程维文). Chin. Phys. B, 2015, 24(12): 120307.
[12] Scintillation of partially coherent Gaussian-Schell model beam propagation in slant atmospheric turbulence considering inner- and outer-scale effects
Li Ya-Qing (李亚清), Wu Zhen-Sen (吴振森), Zhang Yuan-Yuan (张元元), Wang Ming-Jun (王明军). Chin. Phys. B, 2014, 23(7): 074202.
[13] Long-distance propagation of pseudo-partially coherent Gaussian Schell-model beams in atmospheric turbulence
Qian Xian-Mei (钱仙妹), Zhu Wen-Yue (朱文越), Rao Rui-Zhong (饶瑞中). Chin. Phys. B, 2012, 21(9): 094202.
[14] Characteristics of a partially coherent Gaussian Schell-model beam propagating in slanted atmospheric turbulence
Li Ya-Qing(李亚清) and Wu Zhen-Sen(吴振森) . Chin. Phys. B, 2012, 21(5): 054203.
[15] Propagation of partially coherent beams carrying an edge dislocation through atmospheric turbulence along a slant path
Li Jin-Hong(李晋红), Zhang Hong-Run(张洪润), and Lü Bai-Da(吕百达). Chin. Phys. B, 2010, 19(9): 099201.
No Suggested Reading articles found!