ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Orbit-orbit interaction and photonic orbital Hall effect in reflection of a light beam |
Zhang Jin (张进), Zhou Xin-Xing (周新星), Ling Xiao-Hui (凌晓辉), Chen Shi-Zhen (陈世贞), Luo Hai-Lu (罗海陆), Wen Shuang-Chun (文双春) |
Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, Hunan University, Changsha 410082, China |
|
|
Abstract We examine the orbit-orbit interaction when a paraxial beam with intrinsic orbital angular momentum (IOAM) reflects at an air-glass interface. The orbital-dependent splitting of the beam intensity distribution arises due to the interaction between IOAM and extrinsic orbital angular momentum (EOAM). In addition, we find that the beam centroid shows an orbital-dependent rotation when seen along the propagation axis. However, the motion of the beam centroid related to the orbit-orbit interaction undergoes a straight line trajectory with a small angle inclining from the propagation axis. Similar to a previously developed spin-dependent splitting in the photonic spin Hall effect, the orbital-dependent splitting could lead to the photonic orbital Hall effect.
|
Received: 24 September 2013
Revised: 11 November 2013
Accepted manuscript online:
|
PACS:
|
42.25.-p
|
(Wave optics)
|
|
41.20.Jb
|
(Electromagnetic wave propagation; radiowave propagation)
|
|
42.79.-e
|
(Optical elements, devices, and systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61025024 and 11074068) and the Innovation Foundation for Postgraduates of Hunan Province, China (Grant No. CX2013B130). |
Corresponding Authors:
Luo Hai-Lu
E-mail: hailuluo@hnu.edu.cn
|
Cite this article:
Zhang Jin (张进), Zhou Xin-Xing (周新星), Ling Xiao-Hui (凌晓辉), Chen Shi-Zhen (陈世贞), Luo Hai-Lu (罗海陆), Wen Shuang-Chun (文双春) Orbit-orbit interaction and photonic orbital Hall effect in reflection of a light beam 2014 Chin. Phys. B 23 064215
|
[1] |
Bliokh K Y 2006 Phys. Rev. Lett. 97 043901
|
[2] |
Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185
|
[3] |
O'Neil A T, MacVicar I, Allen L and Padgett M J 2002 Phys. Rev. Lett. 88 053601
|
[4] |
Beth R A 1936 Phys. Rev. 50 115
|
[5] |
Liberman V S and Zeldovich B Y 1992 Phys. Rev. A 46 5199
|
[6] |
Marrucci L, Manzo C and Paparo D 2006 Phys. Rev. Lett. 96 163905
|
[7] |
Zhao Y, Edgar J S, Jeffries G D M, McGloin D and Chiu D T 2007 Phys. Rev. Lett. 99 073901
|
[8] |
Bliokh K Y, Niv A, Kleiner V and Hasman E 2008 Nat. Photon. 2 748
|
[9] |
Haefner D, Sukhov S and Dogariu A 2009 Phys. Rev. Lett. 102 123903
|
[10] |
Rodríguez-Herrera O G, Lara D, Bliokh K Y, Ostrovskaya E A and Dainty C 2010 Phys. Rev. Lett. 104 253601
|
[11] |
Vuong L T, Adam A J L, Brok J M, Planken P C M and Urbach H P 2010 Phys. Rev. Lett. 104 083903
|
[12] |
Shitrit N, Yulevich I, Maguid E, Ozeri D, Veksler D, Kleiner V and Hasman E 2013 Science 340 724
|
[13] |
Onoda M, Murakami S and Nagaosa N 2004 Phys. Rev. Lett. 93 083901
|
[14] |
Bliokh K Y and Bliokh Y P 2006 Phys. Rev. Lett. 96 073903
|
[15] |
Hosten O and Kwiat P 2008 Science 319 787
|
[16] |
Bliokh K Y and Bliokh Y P 2007 Phys. Rev. E 75 066609
|
[17] |
Aiello A and Woerdman J P 2008 Opt. Lett. 33 1437
|
[18] |
Qin Y, Li Y, He H and Gong Q H 2009 Opt. Lett. 34 2551
|
[19] |
Ménard J M, Mattacchione A E, van Driel H M, Hautmann C and Betz M 2010 Phys. Rev. B 82 045303
|
[20] |
Luo H L, Zhou X X, Shu W X, Wen S C and Fan D Y 2011 Phys. Rev. A 84 043806
|
[21] |
Kong L J, Wang X L, Li S M, Li Y N, Chen J, Gu B and Wang H T 2012 Appl. Phys. Lett. 100 071109
|
[22] |
Tang M, Zhou X X, Luo H L and Wen S C 2012 Chin. Phys. B 21 124201
|
[23] |
Pan M M, Li Y, Ren J L, Wang B, Xiao Y F, Yang H and Gong Q H 2013 Appl. Phys. Lett. 103 071106
|
[24] |
Gorodetski Y, Niv A, Kleiner V and Hasman E 2008 Phys. Rev. Lett. 101 043903
|
[25] |
Shitrit N, Bretner I, Gorodetski Y, Kleiner V and Hasman E 2011 Nano Lett. 11 2038
|
[26] |
Kang M, Chen J, Gu B, Li Y, Vuong L T and Wang H T 2012 Phys. Rev. A 85 035801
|
[27] |
Ling X H, Zhou X X, Luo H L and Wen S C 2012 Phys. Rev. A 86 053824
|
[28] |
Bekshaev A Y and Soskin M S 2007 Opt. Commun. 271 332
|
[29] |
Berry M V 2009 J. Opt. A: Pure Appl. Opt. 11 094001
|
[30] |
Okuda H and Sasada H 2008 J. Opt. Soc. Am. A 25 881
|
[31] |
Luo H L, Wen S C, Shu W X and Fan D Y 2010 Phys. Rev. A 81 053826
|
[32] |
Bliokh K Y, Shadrivov I V and Kivshar Y S 2009 Opt. Lett. 34 389
|
[33] |
Merano M, Hermosa N, Woerdman J P and Aiello A 2010 Phys. Rev. A 82 023817
|
[34] |
Zhou X X, Luo H L and Wen S C 2012 Opt. Express 20 16003
|
[35] |
Kong L J, Qian S X, Ren Z C, Wang X L and Wang H T 2012 Phys. Rev. A 85 035804
|
[36] |
Yin X B, Ye Z L, Rho J, Wang Y and Zhang X 2013 Science 339 1405
|
[37] |
Li G X, Kang M, Chen S M, Zhang S, Pun E Y B, Cheah K W and Li J 2013 Nano Lett. 13 4148
|
[38] |
Aiello A, Lindlein N, Marquardt C and Leuchs G 2009 Phys. Rev. Lett. 103 100401
|
[39] |
Bliokh K Y, Bliokh Y P, Savelév S and Nori F 2007 Phys. Rev. Lett. 99 190404
|
[40] |
Uchida M and Tonomura A 2010 Nature 464 737
|
[41] |
Verbeeck J, Tian H and Schattschneider P 2010 Nature 467 301
|
[42] |
McMorran B, Agrawal A, Anderson I, Herzing A, Lezec H, McClelland J and Unguris J 2011 Science 331 192
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|