|
|
Geometric discord for non-X states |
Liu Chen (刘辰), Dong Yu-Li (董裕力), Zhu Shi-Qun (朱士群) |
School of Physical Science and Technology, Soochow University, Suzhou 215006, China |
|
|
Abstract The level surfaces of geometric discord for a class of two-qubit non-X states are investigated when the Bloch vectors are in arbitrary directions. The level surfaces of constant geometric discord are formed by three intersecting open tubes along three orthogonal directions. When Bloch vectors increase, the tubes along one or two directions shrink towards the center and may either totally disappear or the open tubes may become closed tubes when the Bloch vectors reach a critical value. In the generalized amplitude damping channel, the evolution of geometric discord shows double sudden changes when the parameter γ increases. In the phase damping channel, the freezing phenomenon of geometric discord also exists.
|
Received: 21 September 2013
Revised: 09 November 2013
Accepted manuscript online:
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
75.10.Pq
|
(Spin chain models)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074184, 11204197, and 11105095), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20103201120002), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)). |
Corresponding Authors:
Dong Yu-Li, Zhu Shi-Qun
E-mail: yldong@suda.edu.cn;szhu@suda.edu.cn
|
Cite this article:
Liu Chen (刘辰), Dong Yu-Li (董裕力), Zhu Shi-Qun (朱士群) Geometric discord for non-X states 2014 Chin. Phys. B 23 060307
|
[1] |
Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
|
[2] |
Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[3] |
Bennett C H, DiVicenzo D P, Shor P W, Smolin J A, Terhal B M and Wootters W K 2001 Phys. Rev. Lett. 87 077902
|
[4] |
Scarani V, Lblisdir S, Gisin N and Acin A 2005 Rev. Mod. Phys. 77 1225
|
[5] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[6] |
Knill E and Laflamme R 1998 Phys. Rev. Lett. 81 5672
|
[7] |
Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
|
[8] |
Henderson L and Vedral V 2001 J. Phys. A: Math. Gen. 34 6899
|
[9] |
Luo S 2008 Phys. Rev. A 77 022301
|
[10] |
Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
|
[11] |
Li B, Wang Z X and Fei S M 2011 Phys. Rev. A 83 022321
|
[12] |
Modi K, Paterek T, Son W, Vedral V and Williamson M 2010 Phys. Rev. Lett. 104 080501
|
[13] |
Werlang T, Souza S, Fanchini F F and Villas Boas C J 2009 Phys. Rev. A 80 024103
|
[14] |
Wang B, Xu Z Y, Chen Z Q and Feng M 2010 Phys. Rev. A 81 014101
|
[15] |
Xu J W and Chen Q H 2012 Chin. Phys. B 21 040302
|
[16] |
Qian Y and Xu J B 2012 Chin. Phys. B 21 030305
|
[17] |
Su X L 2013 Chin. Phys. B 22 080304
|
[18] |
Auccaise R, Celeri L C, Soares-Pinto D O, deAzevedo E R, Maziero J, Souza A M, Bonagamba T J, Sarthour R S, Oliveira I S and Serra R M 2011 Phys. Rev. Lett. 107 140403
|
[19] |
Mazzola L, Piilo J and Maniscalco S 2010 Phys. Rev. Lett. 104 200401
|
[20] |
You B and Cen L 2012 Phys. Rev. A 86 012102
|
[21] |
Piani M, Horodecki P and Horodecki R 2008 Phys. Rev. Lett. 100 090502
|
[22] |
Luo S and Sun W 2010 Phys. Rev. A 82 012338
|
[23] |
Madhok V and Datta A 2011 Phys. Rev. A 83 032323
|
[24] |
Gu M, Chrzanowski H M, Assad S M, Symul T, Modi K, Ralph T C, Vedral V and Lam P K 2012 Nat. Phys. 8 671
|
[25] |
Yao J Y, Dong Y L and Zhu S Q 2013 Commun. Theor. Phys. 59 693
|
[26] |
Chen Q Y, Fang M F, Xiao X and Zhou X F 2011 Chin. Phys. B 20 050302
|
[27] |
Wang L C, Shen J and Yi X X 2011 Chin. Phys. B 20 050306
|
[28] |
Wang C and Chen Q H 2013 Chin. Phys. B 22 040304
|
[29] |
Dakic B, Vedral V and Brukner C 2010 Phys. Rev. Lett. 105 190502
|
[30] |
Luo S and Fu S 2010 Phys. Rev. A 82 034302
|
[31] |
Rana S and Parashar P 2012 Phys. Rev. A 85 024102
|
[32] |
Hassan A S M, Lari B and Joag P S 2012 Phys. Rev. A 85 024302
|
[33] |
Bellomo B, Giorgi G L, Galve F, Franco R L, Compagno G and Zambrini R2012 Phys. Rev. A 85 032104
|
[34] |
Yao Y, Li H W, Yin Z Q and Han Z F 2012 Phys. Lett. A 376 358
|
[35] |
Mohamed A B A 2013 Quantum. Inf. Process 12 1141
|
[36] |
Adhikari S and Banerjee S 2012 Phys. Rev. A 86 062313
|
[37] |
Xiao R L, Xiao X and Zhong W J 2013 Chin. Phys. B 22 080306
|
[38] |
Dakic B, Lipp Y O, Ma X, Ringbauer M, Kropatschek S, Barz S, Paterek T, Vedral V, Zeilinger A, Brukner C and Walther P 2012 Nat. Phys. 8 666
|
[39] |
Giorgi G L 2013 Phys. Rev. A 88 022315
|
[40] |
Lang M D and Caves C M 2010 Phys. Rev. Lett. 105 150501
|
[41] |
Montealegre J D, Paula F M, Saguia A and Sarandy M S 2013 Phys. Rev. A 87 042115
|
[42] |
Piani M 2012 Phys. Rev. A 86 034101
|
[43] |
Tufarelli T, Girolami D, Vasile R, Bose S and Adesso G 2012 Phys. Rev. A 86 052326
|
[44] |
Hu X, Fan H, Zhou D L and Liu W M 2012 arXiv: 1203.6149
|
[45] |
Chang L and Luo S 2013 Phys. Rev. A 87 062303
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|