ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Laser-polarization-dependent spontaneous emission of the zero phonon line from single nitrogen–vacancy center in diamond |
Zhang Duo (张多)a, Li Jia-Hua (李家华)b c, Yang Xiao-Xue (杨晓雪)b |
a School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430023, China; b School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China; c Key Laboratory of Fundamental Physical Quantities Measurement of Ministry of Education, Wuhan 430074, China |
|
|
Abstract We investigate spontaneous emission properties and control of the zero phonon line (ZPL) from a diamond nitrogen-vacancy (NV) center coherently driven by a single elliptically polarized control field. We use the Schrödinger equation to calculate the probability amplitudes of the wave function of the coupled system and derive analytical expressions of the spontaneous emission spectra. The numerical results show that a few interesting phenomena such as enhancement, narrowing, suppression, and quenching of the ZPL spontaneous emission can be realized by modulating the polarization-dependent phase, the Zeeman shift, and the intensity of the control field in our system. In the dressed-state picture of the control field, we find that multiple spontaneously generated coherence arises due to three close-lying states decaying to the same state. These results are useful in real experiments.
|
Received: 22 July 2013
Revised: 08 September 2013
Accepted manuscript online:
|
PACS:
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
32.80.Qk
|
(Coherent control of atomic interactions with photons)
|
|
32.50.+d
|
(Fluorescence, phosphorescence (including quenching))
|
|
76.30.Mi
|
(Color centers and other defects)
|
|
Fund: Part of this project supported by the National Natural Science Foundation of China (Grant Nos. 11375067, 11275074, 11104210, 11004069, and 91021011), the Doctoral Foundation of the Ministry of Education of China (Grant No. 20100142120081), and the National Basic Research Program of China (Grant No. 2012CB922103). |
Corresponding Authors:
Zhang Duo, Li Jia-Hua
E-mail: zhangduo10@gmail.com;huajia_li@163.com
|
About author: 42.50.Gy; 32.80.Qk; 32.50.+d; 76.30.Mi |
Cite this article:
Zhang Duo (张多), Li Jia-Hua (李家华), Yang Xiao-Xue (杨晓雪) Laser-polarization-dependent spontaneous emission of the zero phonon line from single nitrogen–vacancy center in diamond 2014 Chin. Phys. B 23 044204
|
[1] |
Agarwal G S 1991 Phys. Rev. Lett. 67 980
|
[2] |
Zibrov A S, Lukin M D, Nikonov D E, Hollberg L, Scully M O, Velichansky V L and Robinson H G 1995 Phys. Rev. Lett. 75 1499
|
[3] |
Harris S E 1989 Phys. Rev. Lett. 62 1033
|
[4] |
Gao J Y, Guo C, Guo X Z, Jin G X, Wang Q W, Zhao J, Zhang H Z, Jiang Y, Wang D Z and Jiang D M 1992 Opt. Commun. 93 323
|
[5] |
Wu J H, Wang D P, Zhang H F, Xiao Z H and Gao J Y 2003 Chin. Phys. 12 39
|
[6] |
Scully M O and Fleischhauer M 1992 Phys. Rev. Lett. 69 1360
|
[7] |
Fleischhauer M, Matsko A B and Scully M O 2000 Phys. Rev. A 62 013808
|
[8] |
Singh M R 2004 Phys. Rev. A 69 023807
|
[9] |
Yang X X and Wu Y 2003 Chin. Phys. Lett. 20 1736
|
[10] |
Scully M O 1991 Phys. Rev. Lett. 67 1855
|
[11] |
Fleischhauer M, Keitel C H, Scully M O, Su C, Ulrich B T and Zhu S Y 1992 Phys. Rev. A 46 1468
|
[12] |
Wang F, Gong C, Tan X Y and Shi W X 2012 Chin. Phys. B 21 114206
|
[13] |
Bennett C H and Divincenzo D P 2000 Nature 404 247
|
[14] |
Petrosyan D and Malakyan Y P 2004 Phys. Rev. A 70 023822
|
[15] |
Paternostro M, Kim M S and Knight P L 2005 Phys. Rev. A 71 022311
|
[16] |
Jiang X Q, Zhang B, Lu Z W and Sun X D 2011 Phys. Rev. A 83 053823
|
[17] |
Li G X, Evers J and Keitel C H 2009 Phys. Rev. B 80 045102
|
[18] |
Zeng X D, Li G X, Yang Y P and Zhu S Y 2012 Phys. Rev. A 86 033819
|
[19] |
Singh M R 2007 Phys. Rev. A 75 033810
|
[20] |
Singh M R 2006 J. Phys. B: At. Mol. Opt. Phys. 39 5131
|
[21] |
Singh M R 2007 Phys. Lett. A 363 177
|
[22] |
Angelakis D G, Paspalakis E and Knight P L 2001 Phys. Rev. A 64 013801
|
[23] |
Yang Y, Fleischhauer M and Zhu S Y 2003 Phys. Rev. A 68 043805
|
[24] |
Agarwal G S and Pathak P K 2004 Phys. Rev. A 70 025802
|
[25] |
Tan R and Li G X 2005 Acta Phys. Sin. 54 2059 (in Chinese)
|
[26] |
Huang X S, Liu H L and Wang D 2012 Chin. Phys. B 21 054218
|
[27] |
Zhu S Y and Scully M O 1996 Phys. Rev. Lett. 76 388
|
[28] |
Paspalakis E and Knight P L 1998 Phys. Rev. Lett. 81 293
|
[29] |
Paspalakis E, Keitel C H and Knight P L 1998 Phys. Rev. A 58 4868
|
[30] |
Gu W J and Li G X 2012 Phys. Rev. A 85 014101
|
[31] |
Wu J H, Li A J, Ding Y, Zhao Y C and Gao J Y 2005 Phys. Rev. A 72 023802
|
[32] |
Li A J, Song X L, Wei X G, Wang L and Gao J Y 2008 Phys. Rev. A 77 053806
|
[33] |
Qi J B 2009 Phys. Rev. A 80 043827
|
[34] |
Jelezko F, Gaebel T, Popa I, Domhan M, Gruber A and Wrachtrup J 2004 Phys. Rev. Lett. 93 130501
|
[35] |
Epstein R J, Mendoza F M, Kato Y K and Awschalom D D 2005 Nat. Phys. 1 94
|
[36] |
Gaebel T, Domhan M, Popa I, Wittmann C, Neumann P, Jelezko F, Rabeau J R, Stavrias N, Greentree A D, Prawer S, Meijer J, Twamley J, Hemmer P R and Wrachtrup J 2006 Nat. Phys. 2 408
|
[37] |
Dutt M V G, Childress L, Jiang L, Togan E, Maze J, Jelezko F, Zibrov A S, Hemmer P R and Lukin M D 2007 Science 316 1312
|
[38] |
Hanson R, Dobrovitski V V, Feiguin A E, Gywat O and Awschalom D D 2008 Science 320 352
|
[39] |
Park Y S, Cook A K and Wang H 2006 Nano Lett. 6 2075
|
[40] |
Larsson M, Dinyari K N and Wang H 2009 Nano Lett. 9 1447
|
[41] |
van der Sar T, Wang Z H, Blok M S, Bernien H, Taminiau T H, Toyli D M, Lidar D A, Awschalom D D, Hanson R and Dobrovitski V V 2012 Nature 484 82
|
[42] |
de Lange G, Wang Z H, Riste D, Dobrovitski V V and Hanson R 2010 Science 330 60
|
[43] |
Fuchs G D, Falk A L, Dobrovitski V V and Awschalom D D 2012 Phys. Rev. Lett. 108 157602
|
[44] |
Togan E, Chu Y, Trifonov A S, Jiang L, Maze J, Childress L, Dutt M V G, Sorensen A S, Hemmer P R, Zibrov A S and Lukin M D 2010 Nature 466 730
|
[45] |
Yang W L, Yin Z Q, Chen Z X, Kou S P, Feng M and Oh C H 2012 Phys. Rev. A 86 012307
|
[46] |
Yang W L, Yin Z Q, Xu Z Y, Feng M and Du J F 2010 Appl. Phys. Lett. 96 241113
|
[47] |
Santori C, Barclay P E, Fu K M C, Beausoleil R G, Spillane S and Fisch M 2010 Nanotechnology 21 274008
|
[48] |
Santori C, Tamarat P, Neumann P, Wrachtrup J, Fattal D, Beausoleil R G, Rabeau J, Olivero P, Greentree A D, Prawer S, Jelezko F and Hemmer P 2006 Phys. Rev. Lett. 97 247401
|
[49] |
Yang W L, Yin Z Q, Xu Z Y, Feng M and Oh C H 2011 Phys. Rev. A 84 043849
|
[50] |
Yang W L, An J H, Zhang C, Feng M and Oh C H 2013 Phys. Rev. A 87 022312
|
[51] |
Wang Z H and Dobrovitski V V 2011 Phys. Rev. B 84 045303
|
[52] |
Wolters J, Schell A W, Kewes G, Nüsse N, Schoengen M, Döscher H, Hannappel T, Löchel B, Barth M and Benson O 2010 Appl. Phys. Lett. 97 141108
|
[53] |
Manson N B, Harrison J P and Sellars M J 2006 Phys. Rev. B 74 104303
|
[54] |
Khadka U, Zhang Y P and Xiao M 2010 Phys. Rev. A 81 023830
|
[55] |
Singh M R 2009 Opt. Lett. 34 2909
|
[56] |
Wu Y and Yang X X 2004 Phys. Rev. A 70 053818
|
[57] |
Wu Y and Yang X X 2005 Phys. Rev. A 71 053806
|
[58] |
Wu Y, Payne M G, Hagley E W and Deng L 2004 Phys. Rev. A 69 063803
|
[59] |
Petrosyan D and Kurizki G 2001 Phys. Rev. A 64 023810
|
[60] |
Singh M R and Lipson R H 2008 J. Phys. B: At. Mol. Opt. Phys. 41 015401
|
[61] |
Xia H R, Ye C Y and Zhu S Y 1996 Phys. Rev. Lett. 77 1032
|
[62] |
Liu C P, Gong S Q, Fan X J, Jin S Q and Xu Z Z 2006 Opt. Commun. 254 368
|
[63] |
Liu C P, Gong S Q, Fan X J and Xu Z Z 2004 Opt. Commun. 231 289
|
[64] |
Liu C P, Gong S Q, Fan X J and Xu Z Z 2004 Opt. Commun. 239 383
|
[65] |
Batalov A, Jacques V, Kaiser F, Siyushev P, Neumann P, Rogers L J, McMurtrie R L, Manson N B, Jelezko F and Wrachtrup J 2009 Phys. Rev. Lett. 102 195506
|
[66] |
Tamarat P, Manson N B, Harrison J P, McMurtrie R L, Nizovtsev A, Santori C, Beausoleil R G, Neumann P, Gaebel T, Jelezko F, Hemmer P and Wrachtrup J 2008 New J. Phys. 10 045004
|
[67] |
Neumann P, Kolesov R, Jacques V, Beck J, Tisler J, Batalov A, Rogers L, Manson N B, Balasubramanian G, Jelezko F and Wrachtrup J 2009 New J. Phys. 11 013017
|
[68] |
Santori C, Fattal D, Spillane S M, Fiorentino M, Beausoleil R G, Greentree A D, Olivero P, Draganski M, Rabeau J R, Reichart P, Gibson B C, Rubanov S, Jamieson D N and Prawer S 2006 Opt. Express 14 7986
|
[69] |
Maze J R, Gali A, Togan E, Chu Y, Trifonov A, Kaxiras E and Lukin M D 2011 New J. Phys. 13 025025
|
[70] |
Aharonovich I, Castelletto S, Simpson D A, Su C H, Greentree A D and Prawer S 2011 Rep. Prog. Phys. 74 076501
|
[71] |
Fuchs G D, Dobrovitski V V, Hanson R, Batra A, Weis C D, Schenkel T and Awschalom D D 2008 Phys. Rev. Lett. 101 117601
|
[72] |
Ofori-Okai B K, Pezzagna S, Chang K, Loretz M, Schirhagl R, Tao Y, Moores B A, Groot-Berning K, Meijer J and Degen C L 2012 Phys. Rev. B 86 081406(R)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|