1 Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract The study on deflagration-to-detonation transition (DDT) is very important because this mechanism has relevance to safety issues in industries, where combustible premixed gases are in general use. However, the quantitative prediction of DDT is one of the major unsolved problems in combustion and detonation theory to date. In this paper, the DDT process is studied theoretically and the critical condition is given by a concise theoretical expression. The results show that a deflagration wave propagating with about 60% Chapman-Jouguet (CJ) detonation velocity is a critical condition. This velocity is the maximum propagating velocity of a deflagration wave and almost equal to the sound speed of combustion products. When this critical condition is reached, a CJ detonation is triggered immediately. This is the quantitative criteria of the DDT process.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.