Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 084703    DOI: 10.1088/1674-1056/27/8/084703
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Theoretical analysis on deflagration-to-detonation transition

Yun-Feng Liu(刘云峰)1,2, Huan Shen(沈欢)1,2, De-Liang Zhang(张德良)1,2, Zong-Lin Jiang(姜宗林)1,2
1 Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  The study on deflagration-to-detonation transition (DDT) is very important because this mechanism has relevance to safety issues in industries, where combustible premixed gases are in general use. However, the quantitative prediction of DDT is one of the major unsolved problems in combustion and detonation theory to date. In this paper, the DDT process is studied theoretically and the critical condition is given by a concise theoretical expression. The results show that a deflagration wave propagating with about 60% Chapman-Jouguet (CJ) detonation velocity is a critical condition. This velocity is the maximum propagating velocity of a deflagration wave and almost equal to the sound speed of combustion products. When this critical condition is reached, a CJ detonation is triggered immediately. This is the quantitative criteria of the DDT process.
Keywords:  deflagration      detonation      deflagration-to-detonation transition  
Received:  26 December 2017      Revised:  29 March 2018      Accepted manuscript online: 
PACS:  47.70.Pq (Flames; combustion)  
  47.40.Rs (Detonation waves)  
  82.33.Vx (Reactions in flames, combustion, and explosions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11672312 and 11532014).
Corresponding Authors:  Yun-Feng Liu     E-mail:  liuyunfeng@imech.ac.cn

Cite this article: 

Yun-Feng Liu(刘云峰), Huan Shen(沈欢), De-Liang Zhang(张德良), Zong-Lin Jiang(姜宗林) Theoretical analysis on deflagration-to-detonation transition 2018 Chin. Phys. B 27 084703

[1] Brinkley S R and Lewis B 1959 Seventh Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, p. 807
[2] Oppenheim A K, Laderman A J and Urtiew P A 1962 Combustion Flame 6 193
[3] Oppenheim A K, Laderman A J and Urtiew P A 1963 Ninth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, p. 265
[4] Urtiew P and Oppenheim A K 1966 Proc. Roy. Soc. Lond. Ser. A 295 13
[5] Lee J H S and Moen I O 1980 Prog. Energy Combust. Sci. 6 359
[6] Shepherd J E and Lee J H S 1992 Major Research Topics in Combustion (New York: Springer) p. 439
[7] Zhao F, Tan H, Wu Q, et al. 2009 Physics 38 894 (in Chinese)
[8] Obara T, Kobayashi T and Ohyagi S 2012 Shock Waves 22 627
[9] Lin W, Zhou J, Fan X H, et al. 2015 Chin. Phys. B 24 014701
[10] Wang J, Duan J Y, Huang W, et al. 2011 Chin. J. High Press. Phys. 25 365 (in Chinese)
[11] Han X, Zhou J and Lin Z Y 2012 Chin. Phys. B 21 124702
[12] Goodwin G B, Houim R W and Oran E S 2017 Proc. Combustion Inst. 36 2717
[13] Valiev D, Bychkov V, Akkerman V, Law C K and Eriksson L E 2010 Combustion Flame 157 1012
[14] Kessler D A, Gamezo V N and Oran E S 2010 Combustion Flame 157 2063
[15] Heidari A and Wen J X 2014 Int. J. Hydrogen Energy 39 6184
[16] Chao J, Otsuka T and Lee J H S 2005 Proc. Combustion Inst. 30 1889
[17] Lee J H S, Knystautas R and Yoshikawa N 1978 Acta Astronaut. 5 971
[18] Zhu Y J, Chao J and Lee J H S 2007 Proc. Combust. Inst. 31 2455
[19] Saif M, Wang W T, Pekalski A, Levin M and Radulescu M I 2017 Proc. Combustion Inst. 36 2771
[20] Kuznetsov M, Alekseev V, Mstsukov I and Dorofeev S 2005 Shock Waves 14 205
[21] Maeda S, Minami S, Okamoto D and Obara T 2016 Shock Waves 26 573
[22] Radulescu M I and Lee J H S 1967 Combustion Flame 11 353
[23] Wang C, Zhao Y Y and Zhang B 2016 J. Loss Prevention Process Industries 43 120
[1] Experimental study of the influence of annular nozzle on acoustic characteristics of detonation sound wave generated by pulse detonation engine
Yang Kang(康杨), Ning Li(李宁), Xiao-Long Huang(黄孝龙), and Chun-Sheng Weng(翁春生). Chin. Phys. B, 2022, 31(10): 104701.
[2] Effect of transversal concentration gradient on H2-O2 cellular detonation
Cheng Wang(王成), Yi-Xuan Wu(吴易烜), Jin Huang(黄金), Wen-Hu Han(韩文虎), Qing-Guan Song(宋清官). Chin. Phys. B, 2020, 29(6): 060503.
[3] Acoustic characteristics of pulse detonation engine sound propagating in enclosed space
Yang Kang(康杨), Ning Li(李宁), Chun-Sheng Weng(翁春生), Xiao-Long Huang(黄孝龙). Chin. Phys. B, 2020, 29(1): 014703.
[4] Effects of heat loss and viscosity friction at walls on flame acceleration and deflagration to detonation transition
Jin Huang(黄金), Wenhu Han(韩文虎), Xiangyu Gao(高向宇), Cheng Wang(王成). Chin. Phys. B, 2019, 28(7): 074704.
[5] Effect of actuating frequency on plasma assisted detonation initiation
Si-Yin Zhou(周思引), Xue-Ke Che(车学科), Di Wang(王迪), Wan-Sheng Nie(聂万胜). Chin. Phys. B, 2018, 27(2): 025208.
[6] Acoustic characteristics of pulse detonation engine with ellipsoidal reflector
Yang Kang(康杨), Ning Li(李宁), Chun-Sheng Weng(翁春生), Chuan-Wei Wang(王传位). Chin. Phys. B, 2018, 27(10): 104703.
[7] Three-dimensional detonation cellular structures in rectangular ducts using an improved CESE scheme
Yang Shen(沈洋), Hua Shen(申华), Kai-Xin Liu(刘凯欣), Pu Chen(陈 璞), De-Liang Zhang(张德良). Chin. Phys. B, 2016, 25(11): 114702.
[8] Critical deflagration waves leading to detonation onset under different boundary conditions
Lin Wei (林伟), Zhou Jin (周进), Fan Xiao-Hua (范孝华), Lin Zhi-Yong (林志勇). Chin. Phys. B, 2015, 24(1): 014701.
[9] Particle path tracking method in two-and three-dimensional continuously rotating detonation engines
Zhou Rui (周蕊), Wu Dan (武丹), Liu Yan (刘岩), Wang Jian-Ping (王健平). Chin. Phys. B, 2014, 23(12): 124704.
[10] Experimental investigations of detonation initiation by hot jets in supersonic premixed flows
Han Xu (韩旭), Zhou Jin (周进), Lin Zhi-Yong (林志勇). Chin. Phys. B, 2012, 21(12): 124702.
No Suggested Reading articles found!