Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 010701    DOI: 10.1088/1674-1056/23/1/010701
GENERAL Prev   Next  

Fast filtering algorithm based on vibration systems and neural information exchange and its application to micro motion robot

Gao Wa (高娃)a, Zha Fu-Sheng (查富生)a, Song Bao-Yu (宋宝玉)b, Li Man-Tian (李满天)a
a State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China;
b Department of Mechanical Design, Harbin Institute of Technology, Harbin 150001, China
Abstract  This paper develops a fast filtering algorithm based on vibration systems theory and neural information exchange approach. The characters, including the derivation process and parameter analysis, are discussed and the feasibility and the effectiveness are testified by the filtering performance compared with various filtering methods, such as the fast wavelet transform algorithm, the particle filtering method and our previously developed single degree of freedom vibration system filtering algorithm, according to simulation and practical approaches. Meanwhile, the comparisons indicate that a significant advantage of the proposed fast filtering algorithm is its extremely fast filtering speed with good filtering performance. Further, the developed fast filtering algorithm is applied to the navigation and positioning system of the micro motion robot, which is a high real-time requirement for the signals preprocessing. Then, the preprocessing data is used to estimate the heading angle error and the attitude angle error of the micro motion robot. The estimation experiments illustrate the high practicality of the proposed fast filtering algorithm.
Keywords:  fast filtering      vibration system      neural information exchange      micro motion robot  
Received:  07 March 2013      Revised:  02 June 2013      Accepted manuscript online: 
PACS:  07.50.Qx (Signal processing electronics)  
  43.40.Cw (Vibrations of strings, rods, and beams)  
  07.10.Cm (Micromechanical devices and systems)  
  45.40.Ln (Robotics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60901074, 51075092, 61005076, and 61175107), the National High Technology Research and Development Program of China (Grant No. 2007AA042105), and the Natural Science Foundation of Heilongjiang Province, China (Grant No. E200903).
Corresponding Authors:  Li Man-Tian     E-mail:  skymoon.hit@gmail.com

Cite this article: 

Gao Wa (高娃), Zha Fu-Sheng (查富生), Song Bao-Yu (宋宝玉), Li Man-Tian (李满天) Fast filtering algorithm based on vibration systems and neural information exchange and its application to micro motion robot 2014 Chin. Phys. B 23 010701

[1] Hsia C H, Guo J M and Chiang J S 2012 Signal Process. 92 89
[2] Leng H Z and Song J Q 2013 Chin. Phys. B 22 030505
[3] Sheng Z, Chen J Q and Xu R H 2012 Acta Phys. Sin. 61 (in Chinese)
[4] Wu X D and Song Z H 2008 Chin. Phys. B 17 3241
[5] Lefebvre A, Corpetti T and Moy L H 2011 Pattern Recogn. Lett. 32 190
[6] Gustafsson F 2010 IEEE Aerosp. Electron. Syst. Mag. 25 53
[7] Strang G 1989 SIAM Rev. 31 614
[8] Cody M A 1992 Dr. Dobbs J. 17 16
[9] Beylkin G, Coifman R and Rokhlin V 1991 Commun. Pure Appl. Math. 44 141
[10] Grossmann A and Morlet J 1984 SIAM J. Math. Anal. 15 723
[11] Gao G R, Liu Y P and Pan Q 2012 Acta Phys. Sin. 61 139701 (in Chinese)
[12] Zhang L X and Boukas E K 2009 Automatica 45 1462
[13] Zhang L X and Shi P 2011 Int. J. Syst. Sci. 42 781
[14] Doucet A, Gordon N J and Krishnamurthy V 2001 IEEE Trans. Signal Process. 49 613
[15] Mukherjee A and Sengupta A 2010 Signal Process. 90 1873
[16] Arulampalam M S, Maskell S, Gordon N and Clapp T 2002 IEEE Trans. Signal Process. 50 174
[17] Nishiyama K 2005 Signal Process. 85 2412
[18] Leng H Z, Song J Q, Cao X Q and Yang J H 2012 Acta Phys. Sin. 61 070501 (in Chinese)
[19] Thompson W T and Dahleh M D 1997 Theory of Vibrations with Applications (5th edn.) (New Jersey: Prentice Hall) p. 28
[20] Chen Z S and Yang Y M 2011 Acta Phys. Sin. 60 074301 (in Chinese)
[21] Zhang J J and Jin Y F 2012 Acta Phys. Sin. 61 130502 (in Chinese)
[22] Masuda N and Aihara K 2003 Phys. Lett. A 311 485
[23] Horcholle-Bossavit G and Quenet B 2009 Biosystems 97 35
[24] Forture E S and Rose G J 2001 Trends Neurosci. 24 381
[25] Zha F S, Chen J X, Li M T, Guo W and Wang P F 2012 Neurocomputing 97 1
[1] Digital synthesis of programmable photonic integrated circuits
Juan Zhang(张娟), Zhengyong Ji(计正勇), Yipeng Ding(丁一鹏), and Yang Wang(王阳). Chin. Phys. B, 2022, 31(2): 024208.
[2] Blind parameter estimation of pseudo-random binary code-linear frequency modulation signal based on Duffing oscillator at low SNR
Ke Wang(王珂), Xiaopeng Yan(闫晓鹏), Ze Li(李泽), Xinhong Hao(郝新红), and Honghai Yu(于洪海). Chin. Phys. B, 2021, 30(5): 050708.
[3] Estimation of sea clutter inherent Doppler spectrum from shipborne S-band radar sea echo
Jin-Peng Zhang(张金鹏), Yu-Shi Zhang(张玉石), Xin-Yu Xu(许心瑜), Qing-Liang Li(李清亮), Jia-Ji Wu(吴家骥). Chin. Phys. B, 2020, 29(6): 068402.
[4] Weak wide-band signal detection method based on small-scale periodic state of Duffing oscillator
Jian Hou(侯健), Xiao-peng Yan(闫晓鹏), Ping Li(栗苹), Xin-hong Hao(郝新红). Chin. Phys. B, 2018, 27(3): 030702.
[5] ADC border effect and suppression of quantization error in the digital dynamic measurement
Li-Na Bai(白丽娜), Hai-Dong Liu(刘海东), Wei Zhou(周渭), Yong Zhang(张勇), Hong-Qi Zhai(翟鸿启), Zhen-Jian Cui(崔震健), Ming-Ying Zhao(赵明英), Xiao-Qian Gu(谷小倩), Bei-Ling Liu(刘蓓玲), Li-Bei Huang(黄李贝). Chin. Phys. B, 2017, 26(9): 090601.
[6] Border effect-based precise measurement of any frequency signal
Bai Li-Na (白丽娜), Ye Bo (叶波), Xuan Mei-Na (宣美娜), Jin Yu-Zhen (金瑜珍), Zhou Wei (周渭). Chin. Phys. B, 2015, 24(12): 120601.
[7] Research and application of regular phenomenon between periodic signals
Ye Yun-Xia (叶云霞), Xuan Zong-Qiang (宣宗强), Gu Jun-Shan (谷军闪), Xuan Yong (宣勇). Chin. Phys. B, 2014, 23(12): 120601.
[8] Modified GIT model for predicting wind-speed behavior of low-grazing-angle radar sea clutter
Zhang Yu-Shi (张玉石), Zhang Jin-Peng (张金鹏), Li Xin (黎鑫), Wu Zhen-Sen (吴振森). Chin. Phys. B, 2014, 23(10): 108402.
[9] Description and reconstruction of one-dimensional photoniccrystal by digital signal processing theory
Zhang Juan (张娟), Fu Wen-Peng (付文鹏), Zhang Rong-Jun (张荣军), Wang Yang (王阳). Chin. Phys. B, 2014, 23(10): 104215.
[10] Breaking chaotic shift key communication via adaptive key identification
Ren Hai-Peng(任海鹏), Han Chong-Zhao(韩崇昭), and Liu Ding(刘丁) . Chin. Phys. B, 2008, 17(4): 1202-1208.
No Suggested Reading articles found!