Please wait a minute...
Chin. Phys. B
 

Influence of nitrogen flow rate on the structure and properties of Ti and N co-doped diamond like carbon films deposited by arc ion plating

Abstract  In this paper, Ti-C-N nanocomposite films were deposited under different nitrogen flow rate by pulsed bias arc ion plating using Ti and graphite targets in the Ar/N2 mixture gases. The surface morphology, composition, microstructure and mechanical properties of the Ti-C-N films were investigated systematically by field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), grazing incident X-ray diffraction (GIXRD), Raman spectra and nano-indentation. The results show that the nanocrystalline Ti(C,N) phase precipitates in the film from GIXRD and XPS analysis, and Raman spectra proves the presence of diamond-like carbon, indicating the formation of nanocomposite films with microstructures comprising of nanocrystalline Ti(C,N) phase embedded into an diamond-like matrix. The nitrogen flow rate has a significant effect on the composition, structure and properties of the films. The nano-hardness and elastic modulus first increase and then decrease as nitrogen flow rate increases, reaching a maximum of 34.3 GPa and 383.2 GPa, at a nitrogen flow rate of 90 sccm, respectively.
Keywords:  arc ion plating      Ti-C-N film      nitrogen flow rate      microstructure  
Received:  26 July 2013      Revised:  22 September 2013      Published:  31 October 2013
Corresponding Authors:  Lin Zhang   

Cite this article: 

Influence of nitrogen flow rate on the structure and properties of Ti and N co-doped diamond like carbon films deposited by arc ion plating Chin. Phys. B 0

[1] High-resolution bone microstructure imaging based on ultrasonic frequency-domain full-waveform inversion
Yifang Li(李义方), Qinzhen Shi(石勤振), Ying Li(李颖), Xiaojun Song(宋小军), Chengcheng Liu(刘成成), Dean Ta(他得安), and Weiqi Wang(王威琪). Chin. Phys. B, 2021, 30(1): 014302.
[2] Magnetic properties and promising cryogenic magneto-caloric performances of Gd20Ho20Tm20Cu20Ni20 amorphous ribbons
Yikun Zhang(张义坤), Bingbing Wu(吴兵兵), Dan Guo(郭丹), Jiang Wang(王江), and Zhongming Ren(任忠鸣). Chin. Phys. B, 2021, 30(1): 017501.
[3] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[4] Effect of annealing temperature on coercivity of Nd-Fe-B magnets with TbFeAl doping by process of hot-pressing
Ze-Teng Shu(舒泽腾), Bo Zheng(郑波), Guang-Fei Ding(丁广飞), Shi-Cong Liao(廖是聪), Jing-Hui Di(邸敬慧), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Lei Shi(石磊). Chin. Phys. B, 2020, 29(5): 057501.
[5] Multi-scale elastoplastic mechanical model and microstructure damage analysis of solid expandable tubular
Hui-Juan Guo(郭慧娟), Ying-Hua Liu(刘应华), Yi-Nao Su(苏义脑), Quan-Li Zhang(张全立), Guo-Dong Zhan(詹国栋). Chin. Phys. B, 2020, 29(10): 104602.
[6] Influences of grain size and microstructure on optical properties of microcrystalline diamond films
Jia-Le Wang(王家乐), Cheng-Ke Chen(陈成克), Xiao Li(李晓), Mei-Yan Jiang(蒋梅燕), Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2020, 29(1): 018103.
[7] Effect of microstructure on 3He migration in TiT1.9 films
Haifeng Wang(王海峰), Shuming Peng(彭述明), Wei Ding(丁伟), Huahai Shen(申华海), Weidu Wang(王维笃), Xiaosong Zhou(周晓松), Xinggui Long(龙兴贵). Chin. Phys. B, 2018, 27(9): 096103.
[8] Microparticle collection for water purification based on laser-induced convection
Zhi-Hai Liu(刘志海), Jiao-Jie Lei(雷皎洁), Yu Zhang(张羽), Ya-Xun Zhang(张亚勋), Xing-Hua Yang(杨兴华), Jian-Zhong Zhang(张建中), Yun Yang(杨军), Li-Bo Yuan(苑立波). Chin. Phys. B, 2018, 27(5): 054209.
[9] Magnetic field aligned orderly arrangement of Fe3O4 nanoparticles in CS/PVA/Fe3O4 membranes
Meng Du(杜萌), Xing-Zhong Cao(曹兴忠), Rui Xia(夏锐), Zhong-Po Zhou(周忠坡), Shuo-Xue Jin(靳硕学), Bao-Yi Wang(王宝义). Chin. Phys. B, 2018, 27(2): 027805.
[10] High-gradient magnetic field-controlled migration of solutes and particles and their effects on solidification microstructure: A review
Tie Liu(刘铁), Qiang Wang(王强), Yi Yuan(苑轶), Kai Wang(王凯), Guojian Li(李国建). Chin. Phys. B, 2018, 27(11): 118103.
[11] Material microstructures analyzed by using gray level Co-occurrence matrices
Yansu Hu(胡延苏), Zhijun Wang(王志军), Xiaoguang Fan(樊晓光), Junjie Li(李俊杰), Ang Gao(高昂). Chin. Phys. B, 2017, 26(9): 098104.
[12] Multi-phase field simulation of grain growth in multiple phase transformations of a binary alloy
Li Feng(冯力), Beibei Jia(贾北北), Changsheng Zhu(朱昶胜), Guosheng An(安国升), Rongzhen Xiao(肖荣振), Xiaojing Feng(冯小静). Chin. Phys. B, 2017, 26(8): 080504.
[13] Novel inspection of welded joint microstructure using magneto-optical imaging technology
Xiang-dong Gao(高向东), Zheng-wen Li(李正文), De-yong You(游德勇), Seiji Katayama. Chin. Phys. B, 2017, 26(5): 054214.
[14] Interface states study of intrinsic amorphous silicon for crystalline silicon surface passivation in HIT solar cell
You-Peng Xiao(肖友鹏), Xiu-Qin Wei(魏秀琴), Lang Zhou(周浪). Chin. Phys. B, 2017, 26(4): 048104.
[15] Influence of high pulsed magnetic field on tensile properties of TC4 alloy
Gui-Rong Li(李桂荣), Fang-Fang Wang(王芳芳), Hong-Ming Wang(王宏明), Rui Zheng(郑瑞), Fei Xue(薛飞), Jiang-Feng Cheng(程江峰). Chin. Phys. B, 2017, 26(4): 046201.
No Suggested Reading articles found!