Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 027805    DOI: 10.1088/1674-1056/27/2/027805
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetic field aligned orderly arrangement of Fe3O4 nanoparticles in CS/PVA/Fe3O4 membranes

Meng Du(杜萌)1,2, Xing-Zhong Cao(曹兴忠)2, Rui Xia(夏锐)2, Zhong-Po Zhou(周忠坡)1, Shuo-Xue Jin(靳硕学)2, Bao-Yi Wang(王宝义)2
1. Henan Key Laboratory of Photovoltaic Materials, College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, China;
2. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Abstract  

The CS/PVA/Fe3O4 nanocomposite membranes with chainlike arrangement of Fe3O4 nanoparticles are prepared by a magnetic-field-assisted solution casting method. The aim of this work is to investigate the relationship between the microstructure of the magnetic anisotropic CS/PVA/Fe3O4 membrane and the evolved macroscopic physicochemical property. With the same doping content, the relative crystallinity of CS/PVA/Fe3O4-M is lower than that of CS/PVA/Fe3O4. The Fourier transform infrared spectroscopy (FT-TR) measurements indicate that there is no chemical bonding between polymer molecule and Fe3O4 nanoparticle. The Fe3O4 nanoparticles in CS/PVA/Fe3O4 and CS/PVA/Fe3O4-M are wrapped by the chains of CS/PVA, which is also confirmed by scanning electron microscopy (SEM) and x-ray diffraction (XRD) analysis. The saturation magnetization value of CS/PVA/Fe3O4-M obviously increases compared with that of non-magnetic aligned membrane, meanwhile the transmittance decreases in the UV-visible region. The o-Ps lifetime distribution provides information about the free-volume nanoholes present in the amorphous region. It is suggested that the microstructure of CS/PVA/Fe3O4 membrane can be modified in its curing process under a magnetic field, which could affect the magnetic properties and the transmittance of nanocomposite membrane. In brief, a full understanding of the relationship between the microstructure and the macroscopic property of CS/PVA/Fe3O4 nanocomposite plays a vital role in exploring and designing the novel multifunctional materials.

Keywords:  microstructure      CS/PVA/Fe3O4 membrane      positron annihilation      magnetic properties  
Received:  27 September 2017      Revised:  15 November 2017      Published:  05 February 2018
PACS:  78.70.Bj (Positron annihilation)  
  61.05.-a (Techniques for structure determination)  
  81.07.Pr (Organic-inorganic hybrid nanostructures)  
  82.35.Np (Nanoparticles in polymers)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11475197, 11575205, 11404100, and 11304083) and the Key Scientific and Technological Project of Henan Province, China (Grant No. 102102210186).

Corresponding Authors:  Xing-Zhong Cao, Zhong-Po Zhou     E-mail:  caoxzh@ihep.ac.cn;zpzhou@htu.edu.cn
About author:  78.70.Bj; 61.05.-a; 81.07.Pr; 82.35.Np

Cite this article: 

Meng Du(杜萌), Xing-Zhong Cao(曹兴忠), Rui Xia(夏锐), Zhong-Po Zhou(周忠坡), Shuo-Xue Jin(靳硕学), Bao-Yi Wang(王宝义) Magnetic field aligned orderly arrangement of Fe3O4 nanoparticles in CS/PVA/Fe3O4 membranes 2018 Chin. Phys. B 27 027805

[1] Zhang J, Wang J F, Lin T, Wang C H, Ghorbani K, Fang J and Wang X G 2014 Chem. Eng. J. 237 462
[2] Cai N, Li C, Han C, Luo X G, Shen L, Xue Y N and Yu F Q 2016 Appl. Surf. Sci. 369 492
[3] López-de-Dicastillo C, Jordá M, Catalá R, Gavara R and Hernández-Muñoz P 2011 J. Agric. Food Chem. 59 11026
[4] Popescu R C, Fufã M O M, Grumezescu A M and Holban A M 2017 Academic Press 2017 421
[5] Jalvandi J, White M, Gao Y, Truong Y B, Padhye R and Kyratzis I L 2017 Mater. Sci. Eng. C 73 440
[6] Fulco A P P, Melo J D D, Paskocimas C A, de Medeiros S N, de Araujo Machado F L and Rodrigues A R 2016 NDT & E Int. 77 42
[7] Thévenot J, Oliveira H, Sandre O and Lecommandoux S 2013 Chem. Soc. Rev. 42 7099
[8] Steinert B W and Dean D R 2009 Polymer 50 898
[9] Lin Z Y, Liu Y, Raghavan S, Moon K S, Sitaraman S K and Wong C P 2013 ACS Appl. Mater. & Interfaces 5 7633
[10] Takahashi H, Nagao D, Watanabe K, Ishii H and Konno M 2015 Langmuir 31 5590
[11] Wang Q, Dai J F, Li W X, Wei Z Q and Jiang J L 2008 Composites Sci. Technol. 68 1644
[12] Teja A S and Koh P Y 2009 Progress in crystal growth and characterization of materials 55 22
[13] Ren P G, Wang H, Yan D X, Huang H D, Wang H B, Zhang Z P, Xu L and Li Z M 2017 Appl. Sci. Manuf. 97 1
[14] Huang Z Q, Zheng F, Zhang Z, Xu H T and Zhou K M 2012 Desalination 292 64
[15] Wang H and Zhou S 2016 Biomater. Sci. 4 1062
[16] Rinaudo M 2006 Prog. Polymer Sci. 31 603
[17] Lee K Y and Mooney D J 2001 Chem. Rev. 101 1869
[18] Xing R S, Wu H, Zhao C H, Gomaa H, Zhao J, Pan F S and Jiang Z Y 2016 Chem. Eng. & Technol. 39 969
[19] Brijmohan S B and Shaw M T 2007 J. Membrane Sci. 303 64
[20] Tang Y, Chen Q W and Chen R S 2015 Appl. Surf. Sci. 347 202
[21] Huang Z Q, Chen L, Chen K, Zhang Z and Xu H T 2010 J. Appl. Polymer Sci. 117 1960
[22] Liang J J, Huang Y, Zhang L, Wang Y, Ma Y F, Guo T Y and Chen Y S 2009 Adv. Funct. Mater. 19 2297
[23] Jia Y T, Gong J, Gu X H, Kim H Y, Dong J and Shen X Y 2007 Carbohydrate Polymers 67 403
[24] Yan W, Xue H Z, Yu S, Bing H, Xiao Y H, Xin Z W, Yuan H L and Xu L D 2011 Biomed. Mater. 6 055008
[25] Ashjari M, Mahdavian AR, Ebrahimi NG and Mosleh Y 2010 J. Inorganic and Organometallic Polymers and Materials 20 213
[26] Joshi U A, Sharma S C and Harsha S 2012 Composites Part B:Eng. 43 2063
[27] Sharma S K, Sudarshan K and Pujari P K 2016 Phys. Chem. Chem. Phys. 18 25434
[28] Wang S F, Wu Y Z, Zhang N, He G W, Xin Q P, Wu X Y, Wu H, Cao X Z, Guiver MD and Jiang Z Y 2016 Energy Environ. Sci. 9 3107
[29] Zhao J, Zhu Y W, He G W, Xing R S, Pan F S, Jiang Z Y, Zhang P, Cao X Z and Wang B Y 2016 ACS Appl. Mater. Interfaces 8 2097
[30] Xia R, Cao X Z, Gao M Z, Zhang P, Zeng M F, Wang B Y and Wei L 2017 Phys. Chem. Chem. Phys. 19 3616
[31] Sharma SK, Bahadur J, Patil PN, Maheshwari P, Mukherjee S, Sudarshan K, Mazumder S and Pujari PK 2013 ChemPhysChem 14 1055
[32] Gong Z L, Gong J, Yan X L, Gao S and Wang B 2011 J. Phys. Chem. C 115 18468
[33] Deng H, Li X L, Peng Q, Wang X, Chen J P and Li Y D 2005 Angewandte Chemie 18 2842
[34] Nagel C, Günther-Schade K, Fritsch D, Strunskus T and Faupel F 2002 Macromolecules 35 2071
[35] Eldrup M, Lightbody D and Sherwood J N 1981 Chem. Phys. 63 51
[36] Sharma S K, Prakash J, Sudarshan K, Maheshwari P, Sathiyamoorthy D and Pujari P K 2012 Phys. Chem. Chem. Phys.:PCCP 14 10972
[37] Choo K, Ching Y C, Chuah C H, Julai S and Liou N S 2016 Materials 9 644
[38] Boonsongrit Y, Mueller BW and Mitrevej A 2008 Eur. J. Pharm. Biopharm. 69 388
[39] Vicentini D S, Smania A and Laranjeira M C M 2010 Mater. Sci. Eng. C-Mater. 30 503
[40] Costa-Júnior E S, Barbosa-Stancioli E F, Mansur A A, Vasconcelos W L and Mansur HS 2009 Carbohydrate Polymers 76 472
[41] Zheng H, Du Y M, Yu J H, Huang R H and Zhang L N 2001 J. Appl. Polymer Sci. 80 2558
[42] Zhang Q S, Peng B, Li D, Yang Y and Liu Y L 2014 IEEE Photon. Technol. Lett. 26 2181
[43] Niu H L, Chen Q W, Ning M, Jia Y S and Wang X J 2004 J. Phys. Chem. B 108 3996
[44] Wang J, Chen Q, Zeng C and Hou B 2004 Adv. Mater. 16 137
[45] Wang J, Wu Y J and Zhu Y J 2007 Mater. Chem. Phys. 106 1
[1] Leakage of an eagle flight feather and its influence on the aerodynamics
Di Tang (唐迪), Dawei Liu(刘大伟), Yin Yang(杨茵), Yang Li(李阳), Xipeng Huang(黄喜鹏), and Kai Liu(刘凯). Chin. Phys. B, 2021, 30(3): 034701.
[2] Characterization, spectroscopic investigation of defects by positron annihilation, and possible application of synthesized PbO nanoparticles
Sk Irsad Ali, Anjan Das, Apoorva Agrawal, Shubharaj Mukherjee, Maudud Ahmed, P M G Nambissan, Samiran Mandal, and Atis Chandra Mandal. Chin. Phys. B, 2021, 30(2): 026103.
[3] High-resolution bone microstructure imaging based on ultrasonic frequency-domain full-waveform inversion
Yifang Li(李义方), Qinzhen Shi(石勤振), Ying Li(李颖), Xiaojun Song(宋小军), Chengcheng Liu(刘成成), Dean Ta(他得安), and Weiqi Wang(王威琪). Chin. Phys. B, 2021, 30(1): 014302.
[4] Magnetic properties and promising cryogenic magneto-caloric performances of Gd20Ho20Tm20Cu20Ni20 amorphous ribbons
Yikun Zhang(张义坤), Bingbing Wu(吴兵兵), Dan Guo(郭丹), Jiang Wang(王江), and Zhongming Ren(任忠鸣). Chin. Phys. B, 2021, 30(1): 017501.
[5] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[6] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
[7] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[8] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
[9] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[10] Effect of deposition temperature on SrFe12O19@carbonyl iron core-shell composites as high-performance microwave absorbers
Yuan Liu(刘渊), Rong Li(李茸), Ying Jia(贾瑛), Zhen-Xin He(何祯鑫). Chin. Phys. B, 2020, 29(6): 067701.
[11] Effect of annealing temperature on coercivity of Nd-Fe-B magnets with TbFeAl doping by process of hot-pressing
Ze-Teng Shu(舒泽腾), Bo Zheng(郑波), Guang-Fei Ding(丁广飞), Shi-Cong Liao(廖是聪), Jing-Hui Di(邸敬慧), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Lei Shi(石磊). Chin. Phys. B, 2020, 29(5): 057501.
[12] Three- and two-dimensional calculations for the interface anisotropy dependence of magnetic properties of exchange-spring Nd2Fe14B/α-Fe multilayers with out-of-plane easy axes
Qian Zhao(赵倩), Xin-Xin He(何鑫鑫), Francois-Jacques Morvan(李文瀚), Guo-Ping Zhao(赵国平), Zhu-Bai Li(李柱柏). Chin. Phys. B, 2020, 29(3): 037501.
[13] Electronic shell study of prolate Lin(n =15-17) clusters: Magnetic superatomic molecules
Lijuan Yan(闫丽娟), Jianmei Shao(邵健梅), and Yongqiang Li(李永强). Chin. Phys. B, 2020, 29(12): 125101.
[14] Multi-scale elastoplastic mechanical model and microstructure damage analysis of solid expandable tubular
Hui-Juan Guo(郭慧娟), Ying-Hua Liu(刘应华), Yi-Nao Su(苏义脑), Quan-Li Zhang(张全立), and Guo-Dong Zhan(詹国栋)†. Chin. Phys. B, 2020, 29(10): 104602.
[15] High performance RE–Fe–B sintered magnets with high-content misch metal by double main phase process
Yan-Li Liu(刘艳丽), Qiang Ma(马强), Xin Wang(王鑫), Jian-Jun Zhou(周建军), Tong-Yun Zhao(赵同云), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), and Bao-Gen Shen(沈保根)†. Chin. Phys. B, 2020, 29(10): 107504.
No Suggested Reading articles found!